summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEike Rathke <erack@redhat.com>2011-11-28 02:42:55 +0100
committerEike Rathke <erack@redhat.com>2011-11-28 15:25:32 +0100
commit5f357f97ef1539f8dab8af69e1644af6b9c4fc0a (patch)
treea2a9530169def6084821cac459452e3d67c74627
parent7e8eb75aea745146d7d12df70c4f5ca8f3648ed3 (diff)
dr78: #i43040# correction for BesselI, patch from Regina
# HG changeset patch # User Daniel Rentz [dr] <daniel.rentz@oracle.com> # Date 1295613474 -3600 # Node ID 7c526a3a4dfa801f59eaeeea99e7b7a032bc6fe4 # Parent 77c9f7fb9f061730dc584e18425f6645df14b648
-rw-r--r--scaddins/source/analysis/bessel.cxx61
1 files changed, 23 insertions, 38 deletions
diff --git a/scaddins/source/analysis/bessel.cxx b/scaddins/source/analysis/bessel.cxx
index 49ec7c322d83..f28fa51046b0 100644
--- a/scaddins/source/analysis/bessel.cxx
+++ b/scaddins/source/analysis/bessel.cxx
@@ -182,31 +182,36 @@ double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConve
I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
k=0 k! (n+k)!
- Approximation for the BESSEL function, first kind, modified, for great x:
-
- I_n(x) ~ e^x / sqrt( 2 PI x ) for x>=0.
+ No asymptotic approximation used, see issue 43040.
*/
// ----------------------------------------------------------------------------
double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
{
+ const double fEpsilon = 1.0E-15;
+ const sal_Int32 nMaxIteration = 2000;
+ const double fXHalf = x / 2.0;
if( n < 0 )
throw IllegalArgumentException();
double fResult = 0.0;
- if( fabs( x ) <= THRESHOLD )
- {
- /* Start the iteration without TERM(n,0), which is set here.
- TERM(n,0) = (x/2)^n / n!
- */
- double fTerm = pow( x / 2.0, (double)n ) / Fak( n );
- sal_Int32 nK = 1; // Start the iteration with k=1.
- fResult = fTerm; // Start result with TERM(n,0).
-
- const double fSqrX = x * x / 4.0;
+ /* Start the iteration without TERM(n,0), which is set here.
+ TERM(n,0) = (x/2)^n / n!
+ */
+ sal_Int32 nK = 0;
+ double fTerm = 1.0;
+ // avoid overflow in Fak(n)
+ for( nK = 1; nK <= n; ++nK )
+ {
+ fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
+ }
+ fResult = fTerm; // Start result with TERM(n,0).
+ if( fTerm != 0.0 )
+ {
+ nK = 1;
do
{
/* Calculation of TERM(n,k) from TERM(n,k-1):
@@ -226,33 +231,13 @@ double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConve
x^2/4
= -------- TERM(n,k-1)
k(n+k)
- */
- fTerm *= fSqrX; // defined above as x^2/4
- fTerm /= (nK * (nK + n));
- fResult += fTerm;
+ */
+ fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
+ fResult += fTerm;
+ nK++;
}
- while( (fabs( fTerm ) > MAXEPSILON) && (++nK < MAXITER) );
- }
- else
- {
- /* Approximation for the BESSEL function, first kind, modified:
-
- I_n(x) ~ e^x / sqrt( 2 PI x ) for x>=0.
-
- The BESSEL function I_n with n IN {0,2,4,...} is axially symmetric at
- x=0, means I_n(x) = I_n(-x). Therefore the approximation for x<0 is:
-
- I_n(x) = I_n(|x|) for x<0 and n IN {0,2,4,...}.
-
- The BESSEL function I_n with n IN {1,3,5,...} is point-symmetric at
- x=0, means I_n(x) = -I_n(-x). Therefore the approximation for x<0 is:
+ while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
- I_n(x) = -I_n(|x|) for x<0 and n IN {1,3,5,...}.
- */
- double fXAbs = fabs( x );
- fResult = exp( fXAbs ) / sqrt( f_2_PI * fXAbs );
- if( (n & 1) && (x < 0.0) )
- fResult = -fResult;
}
return fResult;
}