diff options
author | Thorsten Behrens <thb@openoffice.org> | 2003-11-12 11:09:52 +0000 |
---|---|---|
committer | Thorsten Behrens <thb@openoffice.org> | 2003-11-12 11:09:52 +0000 |
commit | d29fb24a43fc4d8477181c2b693e163d97c07218 (patch) | |
tree | 6fb6740004e788c9dae1f6ef9244a045771c3196 /basegfx/source/curve | |
parent | db78936286f5b9adf396e92383041b4f515b0edd (diff) |
Added second adaptive subdivision method (this time with an angle differences as the stopping criterion
Diffstat (limited to 'basegfx/source/curve')
-rw-r--r-- | basegfx/source/curve/b2dbeziertools.cxx | 420 |
1 files changed, 364 insertions, 56 deletions
diff --git a/basegfx/source/curve/b2dbeziertools.cxx b/basegfx/source/curve/b2dbeziertools.cxx index eadbd52a56ba..0e6e24a071da 100644 --- a/basegfx/source/curve/b2dbeziertools.cxx +++ b/basegfx/source/curve/b2dbeziertools.cxx @@ -2,9 +2,9 @@ * * $RCSfile: b2dbeziertools.cxx,v $ * - * $Revision: 1.1 $ + * $Revision: 1.2 $ * - * last change: $Author: thb $ $Date: 2003-11-10 13:32:04 $ + * last change: $Author: thb $ $Date: 2003-11-12 12:09:52 $ * * The Contents of this file are made available subject to the terms of * either of the following licenses @@ -76,10 +76,18 @@ #include <basegfx/polygon/b2dpolygon.hxx> #endif +#ifndef _BGFX_VECTOR_B2DVECTOR_HXX +#include <basegfx/vector/b2dvector.hxx> +#endif + #ifndef _BGFX_POINT_B2DPOINT_HXX #include <basegfx/point/b2dpoint.hxx> #endif +#ifndef _BGFX_NUMERIC_FTOOLS_HXX +#include <basegfx/numeric/ftools.hxx> +#endif + namespace basegfx { @@ -87,6 +95,150 @@ namespace basegfx { namespace { + class DistanceErrorFunctor + { + public: + DistanceErrorFunctor( const double& distance ) : + mfDistance2( distance*distance ), + mfLastDistanceError2( ::std::numeric_limits<double>::max() ) + { + } + + bool subdivideFurther( const double& P1x, const double& P1y, + const double& P2x, const double& P2y, + const double& P3x, const double& P3y, + const double& P4x, const double& P4y, + const double&, const double& ) // last two values not used here + { + // Perform bezier flatness test (lecture notes from R. Schaback, + // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) + // + // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| + // 0<=j<=n + // + // What is calculated here is an upper bound to the distance from + // a line through b_0 and b_3 (P1 and P4 in our notation) and the + // curve. We can drop 0 and n from the running indices, since the + // argument of max becomes zero for those cases. + const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) ); + const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) ); + const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) ); + const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) ); + const double distanceError2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y, + fJ2x*fJ2x + fJ2y*fJ2y) ); + + // stop if error measure does not improve anymore. This is a + // safety guard against floating point inaccuracies. + // stop if distance from line is guaranteed to be bounded by d + bool bRet( mfLastDistanceError2 > distanceError2 && + distanceError2 >= mfDistance2 ); + + mfLastDistanceError2 = distanceError2; + + return bRet; + } + + private: + double mfDistance2; + double mfLastDistanceError2; + }; + + + class AngleErrorFunctor + { + public: + AngleErrorFunctor( const double& angleBounds ) : + mfTanAngle( tan( angleBounds ) ), + mfLastTanAngle( ::std::numeric_limits<double>::max() ) + { + } + + bool subdivideFurther( const double P1x, const double P1y, + const double P2x, const double P2y, + const double P3x, const double P3y, + const double P4x, const double P4y, + const double Pdx, const double Pdy ) + { + // Test angle differences between two lines (ad + // and bd), meeting in the t=0.5 division point + // (d), and the angle from the other ends of those + // lines (b and a, resp.) to the tangents to the + // curve at this points: + // + // *__________ + // ......*b + // ... + // .. + // . + // * *d + // | . + // | . + // | . + // | . + // |. + // |. + // * + // a + // + // When using half of the angle bound for the + // difference to the tangents at a or b, resp., + // this procedure guarantees that no angle in the + // resulting line polygon is larger than the + // specified angle bound. This is because during + // subdivision, adjacent curve segments will have + // collinear tangent vectors, thus, when each + // side's line segments differs by at most angle/2 + // from that tangent, the summed difference will + // be at most angle (this was modeled after an + // idea from Armin Weiss). + + // To stay within the notation above, a equals P1, + // the other end point of the tangent starting at + // a is P2, d is Pd, and so forth. The + const vector::B2DVector vecAD( Pdx - P1x, Pdy - P1y ); + const vector::B2DVector vecDB( P4x - Pdx, P4y - Pdy ); + + const double scalarVecADDB( vecAD.scalar( vecDB ) ); + const double crossVecADDB( vecAD.cross( vecDB ) ); + + const vector::B2DVector vecStartTangent( P2x - P1x, P2y - P1y ); + const vector::B2DVector vecEndTangent( P4x - P3x, P4y - P3y ); + + const double scalarVecStartTangentAD( vecStartTangent.scalar( vecAD ) ); + const double crossVecStartTangentAD( vecStartTangent.cross( vecAD ) ); + + const double scalarVecDBEndTangent( vecDB.scalar( vecEndTangent ) ); + const double crossVecDBEndTangent( vecDB.cross( vecEndTangent ) ); + + + double fCurrAngle( ::std::numeric_limits<double>::max() ); + + if( !numeric::fTools::equalZero( scalarVecADDB ) ) + fCurrAngle = fabs( crossVecADDB / scalarVecADDB ); + + if( !numeric::fTools::equalZero( scalarVecStartTangentAD ) ) + fCurrAngle = ::std::min( fCurrAngle, fabs( crossVecStartTangentAD / scalarVecStartTangentAD ) ); + + if( !numeric::fTools::equalZero( scalarVecDBEndTangent ) ) + fCurrAngle = ::std::min( fCurrAngle, fabs( crossVecDBEndTangent / scalarVecDBEndTangent ) ); + + // stop if error measure does not improve anymore. This is a + // safety guard against floating point inaccuracies. + // stop if angle difference is guaranteed to be bounded by mfTanAngle + bool bRet( mfLastTanAngle > fCurrAngle && + fCurrAngle >= mfTanAngle ); + + mfLastTanAngle = fCurrAngle; + + return bRet; + } + + private: + double mfTanAngle; + double mfLastTanAngle; + }; + + /* Recursively subdivide cubic bezier curve via deCasteljau. @param rPoly @@ -108,63 +260,52 @@ namespace basegfx Depth of recursion. Used as a termination criterion, to prevent endless looping. */ - int ImplAdaptiveSubdivide( polygon::B2DPolygon& rPoly, - const double d2, - const double P1x, const double P1y, - const double P2x, const double P2y, - const double P3x, const double P3y, - const double P4x, const double P4y, - const double old_distance2, - int recursionDepth ) + template < class ErrorFunctor > int ImplAdaptiveSubdivide( polygon::B2DPolygon& rPoly, + const ErrorFunctor& rErrorFunctor, + const double P1x, const double P1y, + const double P2x, const double P2y, + const double P3x, const double P3y, + const double P4x, const double P4y, + int recursionDepth ) { // Hard limit on recursion depth, empiric number. enum {maxRecursionDepth=128}; - // Perform bezier flatness test (lecture notes from R. Schaback, - // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) - // - // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| - // 0<=j<=n - // - // What is calculated here is an upper bound to the distance from - // a line through b_0 and b_3 (P1 and P4 in our notation) and the - // curve. We can drop 0 and n from the running indices, since the - // argument of max becomes zero for those cases. - const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) ); - const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) ); - const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) ); - const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) ); - const double distance2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y, - fJ2x*fJ2x + fJ2y*fJ2y) ); - - // stop if error measure does not improve anymore. This is a - // safety guard against floating point inaccuracies. + // deCasteljau bezier arc, split at t=0.5 + // Foley/vanDam, p. 508 + + // Note that for the pure distance error method, this + // subdivision could be moved into the if-branch. But + // since this accounts for saved work only for the + // very last subdivision step, and we need the + // subdivided curve for the angle criterium, I think + // it's justified here. + const double L1x( P1x ), L1y( P1y ); + const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 ); + const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 ); + const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 ); + const double R4x( P4x ), R4y( P4y ); + const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 ); + const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 ); + const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 ); + const double L4x( R1x ), L4y( R1y ); + // stop at recursion level 128. This is a safety guard against // floating point inaccuracies. - // stop if distance from line is guaranteed to be bounded by d - if( old_distance2 > d2 && - recursionDepth < maxRecursionDepth && - distance2 >= d2 ) + if( recursionDepth < maxRecursionDepth && + rErrorFunctor.subdivideFurther( P1x, P1y, + P2x, P2y, + P3x, P3y, + P4x, P4y, + R1x, R1y ) ) { - // deCasteljau bezier arc, split at t=0.5 - // Foley/vanDam, p. 508 - const double L1x( P1x ), L1y( P1y ); - const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 ); - const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 ); - const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 ); - const double R4x( P4x ), R4y( P4y ); - const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 ); - const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 ); - const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 ); - const double L4x( R1x ), L4y( R1y ); - // subdivide further ++recursionDepth; int nGeneratedPoints(0); - nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y, distance2, recursionDepth); - nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y, distance2, recursionDepth); + nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y, recursionDepth); + nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y, recursionDepth); // return number of points generated in this // recursion branch @@ -182,31 +323,198 @@ namespace basegfx return 1; } } + +// LATER +#if 0 + /* Approximate given cubic bezier curve by quadratic bezier segments */ + void ImplQuadBezierApprox( polygon::B2DPolygon& rPoly, + BitStream& rBits, + Point& rLastPoint, + const double d2, + const double P1x, const double P1y, + const double P2x, const double P2y, + const double P3x, const double P3y, + const double P4x, const double P4y ) + { + // Check for degenerate case, where the given cubic bezier curve + // is already quadratic: P4 == 3P3 - 3P2 + P1 + if( P4x == 3.0*P3x - 3.0*P2x + P1x && + P4y == 3.0*P3y - 3.0*P2y + P1y ) + { + Impl_addQuadBezier( rBits, rLastPoint, + 3.0/2.0*P2x - 1.0/2.0*P1x, 3.0/2.0*P2y - 1.0/2.0*P1y, + P4x, P4y); + } + else + { + // Create quadratic segment for given cubic: + // Start and end point must coincide, determine quadratic control + // point in such a way that it lies on the intersection of the + // tangents at start and end point, resp. Thus, both cubic and + // quadratic curve segments will match in 0th and 1st derivative + // at the start and end points + + // Intersection of P2P1 and P4P3 + // (P2y-P4y)(P3x-P4x)-(P2x-P4x)(P3y-P4y) + // lambda = ------------------------------------- + // (P1x-P2x)(P3y-P4y)-(P1y-P2y)(P3x-P4x) + // + // Intersection point IP is now + // IP = P2 + lambda(P1-P2) + // + const double nominator( (P2y-P4y)*(P3x-P4x) - (P2x-P4x)*(P3y-P4y) ); + const double denominator( (P1x-P2x)*(P3y-P4y) - (P1y-P2y)*(P3x-P4x) ); + const double lambda( nominator / denominator ); + + const double IPx( P2x + lambda*( P1x - P2x) ); + const double IPy( P2y + lambda*( P1y - P2y) ); + + // Introduce some alias names: quadratic start point is P1, end + // point is P4, control point is IP + const double QP1x( P1x ); + const double QP1y( P1y ); + const double QP2x( IPx ); + const double QP2y( IPy ); + const double QP3x( P4x ); + const double QP3y( P4y ); + + // Adapted bezier flatness test (lecture notes from R. Schaback, + // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) + // + // ||C(t) - Q(t)|| <= max ||c_j - q_j|| + // 0<=j<=n + // + // In this case, we don't need the distance from the cubic bezier + // to a straight line, but to a quadratic bezier. The c_j's are + // the cubic bezier's bernstein coefficients, the q_j's the + // quadratic bezier's. We have the c_j's given, the q_j's can be + // calculated from QPi like this (sorry, mixed index notation, we + // use [1,n], formulas use [0,n-1]): + // + // q_0 = QP1 = P1 + // q_1 = 1/3 QP1 + 2/3 QP2 + // q_2 = 2/3 QP2 + 1/3 QP3 + // q_3 = QP3 = P4 + // + // We can drop case 0 and 3, since there the curves coincide + // (distance is zero) + + // calculate argument of max for j=1 and j=2 + const double fJ1x( P2x - 1.0/3.0*QP1x - 2.0/3.0*QP2x ); + const double fJ1y( P2y - 1.0/3.0*QP1y - 2.0/3.0*QP2y ); + const double fJ2x( P3x - 2.0/3.0*QP2x - 1.0/3.0*QP3x ); + const double fJ2y( P3y - 2.0/3.0*QP2y - 1.0/3.0*QP3y ); + + // stop if distance from cubic curve is guaranteed to be bounded by d + // Should denominator be 0: then P1P2 and P3P4 are parallel (P1P2^T R[90,P3P4] = 0.0), + // meaning that either we have a straight line or an inflexion point (see else block below) + if( 0.0 != denominator && + ::std::max( fJ1x*fJ1x + fJ1y*fJ1y, + fJ2x*fJ2x + fJ2y*fJ2y) < d2 ) + { + // requested resolution reached. + // Add end points to output file. + // order is preserved, since this is so to say depth first traversal. + Impl_addQuadBezier( rBits, rLastPoint, + QP2x, QP2y, + QP3x, QP3y); + } + else + { + // Maybe subdivide further + + // This is for robustness reasons, since the line intersection + // method below gets instable if the curve gets closer to a + // straight line. If the given cubic bezier does not deviate by + // more than d/4 from a straight line, either: + // - take the line (that's what we do here) + // - express the line by a quadratic bezier + + // Perform bezier flatness test (lecture notes from R. Schaback, + // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) + // + // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| + // 0<=j<=n + // + // What is calculated here is an upper bound to the distance from + // a line through b_0 and b_3 (P1 and P4 in our notation) and the + // curve. We can drop 0 and n from the running indices, since the + // argument of max becomes zero for those cases. + const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) ); + const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) ); + const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) ); + const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) ); + + // stop if distance from line is guaranteed to be bounded by d/4 + if( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y, + fJ2x*fJ2x + fJ2y*fJ2y) < d2/16.0 ) + { + // do not subdivide further, add straight line instead + Impl_addStraightLine( rBits, rLastPoint, P4x, P4y); + } + else + { + // deCasteljau bezier arc, split at t=0.5 + // Foley/vanDam, p. 508 + const double L1x( P1x ), L1y( P1y ); + const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 ); + const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 ); + const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 ); + const double R4x( P4x ), R4y( P4y ); + const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 ); + const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 ); + const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 ); + const double L4x( R1x ), L4y( R1y ); + + // subdivide further + Impl_quadBezierApprox(rBits, rLastPoint, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y); + Impl_quadBezierApprox(rBits, rLastPoint, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y); + } + } + } + } +#endif + } + + sal_Int32 adaptiveSubdivideByDistance( polygon::B2DPolygon& rPoly, + const B2DCubicBezier& rCurve, + double distanceBounds ) + { + const point::B2DPoint start( rCurve.getStartPoint() ); + const point::B2DPoint control1( rCurve.getControlPointA() ); + const point::B2DPoint control2( rCurve.getControlPointB() ); + const point::B2DPoint end( rCurve.getEndPoint() ); + + return ImplAdaptiveSubdivide( rPoly, + DistanceErrorFunctor( distanceBounds ), + start.getX(), start.getY(), + control1.getX(), control1.getY(), + control2.getX(), control2.getY(), + end.getX(), end.getY(), + 0 ); } - int adaptiveSubdivide( polygon::B2DPolygon& rPoly, - const B2DCubicBezier& rCurve, - double distanceBounds ) + sal_Int32 adaptiveSubdivideByAngle( polygon::B2DPolygon& rPoly, + const B2DCubicBezier& rCurve, + double angleBounds ) { - const double distance2( distanceBounds*distanceBounds ); const point::B2DPoint start( rCurve.getStartPoint() ); const point::B2DPoint control1( rCurve.getControlPointA() ); const point::B2DPoint control2( rCurve.getControlPointB() ); const point::B2DPoint end( rCurve.getEndPoint() ); return ImplAdaptiveSubdivide( rPoly, - distance2, + AngleErrorFunctor( angleBounds ), start.getX(), start.getY(), control1.getX(), control1.getY(), control2.getX(), control2.getY(), end.getX(), end.getY(), - ::std::numeric_limits<double>::max(), 0 ); } - int adaptiveSubdivide( polygon::B2DPolygon& rPoly, - const B2DQuadraticBezier& rCurve, - double distanceBounds ) + sal_Int32 adaptiveSubdivideByDistance( polygon::B2DPolygon& rPoly, + const B2DQuadraticBezier& rCurve, + double distanceBounds ) { // TODO return 0; |