summaryrefslogtreecommitdiff
path: root/basegfx
diff options
context:
space:
mode:
authorJan Holesovsky <kendy@suse.cz>2011-03-18 15:55:08 +0100
committerJan Holesovsky <kendy@suse.cz>2011-03-18 15:55:08 +0100
commit4fdd55226d2972e3a256426db3122ac23b0615c6 (patch)
tree23f5b3a68382d6d3b8db0cb5e2537ed74a228d7c /basegfx
parentc3d5444d84e18fa82235bb9d419861ac5e54f544 (diff)
parente1028d9225bc47922c387aa462887c7643bc6c40 (diff)
Merge remote-tracking branch 'origin/integration/dev300_m101'
Conflicts: comphelper/source/misc/servicedecl.cxx i18npool/source/breakiterator/breakiteratorImpl.cxx l10ntools/scripts/localize.pl svl/source/items/itemset.cxx svl/source/memtools/svarray.cxx svl/source/numbers/zformat.cxx svtools/source/brwbox/brwbox1.cxx tools/source/stream/strmwnt.cxx vcl/inc/vcl/graphite_adaptors.hxx vcl/inc/vcl/graphite_layout.hxx vcl/inc/vcl/graphite_serverfont.hxx vcl/source/control/imgctrl.cxx vcl/source/gdi/outdev.cxx vcl/source/gdi/outdev3.cxx vcl/source/glyphs/gcach_ftyp.cxx vcl/source/glyphs/graphite_adaptors.cxx vcl/source/glyphs/graphite_layout.cxx vcl/source/window/winproc.cxx vcl/unx/source/fontmanager/fontconfig.cxx
Diffstat (limited to 'basegfx')
-rw-r--r--basegfx/source/curve/b2dcubicbezier.cxx67
-rw-r--r--basegfx/test/makefile.mk7
2 files changed, 40 insertions, 34 deletions
diff --git a/basegfx/source/curve/b2dcubicbezier.cxx b/basegfx/source/curve/b2dcubicbezier.cxx
index 3e7fdedeeee8..18b72fabb819 100644
--- a/basegfx/source/curve/b2dcubicbezier.cxx
+++ b/basegfx/source/curve/b2dcubicbezier.cxx
@@ -979,10 +979,10 @@ namespace basegfx
// calculate the x-extrema parameters by zeroing first x-derivative
// of the cubic bezier's parametric formula, which results in a
// quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
- const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
- const double fAX = 3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX();
- const double fBX = 2 * maControlPointA.getX() - maControlPointB.getX() - maStartPoint.getX();
- double fCX(maControlPointA.getX() - maStartPoint.getX());
+ const B2DPoint aControlDiff( maControlPointA - maControlPointB );
+ double fCX = maControlPointA.getX() - maStartPoint.getX();
+ const double fBX = fCX + aControlDiff.getX();
+ const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
if(fTools::equalZero(fCX))
{
@@ -997,12 +997,11 @@ namespace basegfx
if( fD >= 0.0 )
{
const double fS = sqrt(fD);
- // same as above but for very small fAX and/or fCX
- // this has much better numerical stability
- // see NRC chapter 5-6 (thanks THB!)
+ // calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAX, rResults);
- impCheckExtremumResult(fCX / fQ, rResults);
+ if( !fTools::equalZero(fS) ) // ignore root multiplicity
+ impCheckExtremumResult(fCX / fQ, rResults);
}
}
else if( !fTools::equalZero(fBX) )
@@ -1012,9 +1011,9 @@ namespace basegfx
}
// calculate the y-extrema parameters by zeroing first y-derivative
- const double fAY = 3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY();
- const double fBY = 2 * maControlPointA.getY() - maControlPointB.getY() - maStartPoint.getY();
- double fCY(maControlPointA.getY() - maStartPoint.getY());
+ double fCY = maControlPointA.getY() - maStartPoint.getY();
+ const double fBY = fCY + aControlDiff.getY();
+ const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
if(fTools::equalZero(fCY))
{
@@ -1026,15 +1025,14 @@ namespace basegfx
{
// derivative is polynomial of order 2 => use binomial formula
const double fD = fBY*fBY - fAY*fCY;
- if( fD >= 0 )
+ if( fD >= 0.0 )
{
const double fS = sqrt(fD);
- // same as above but for very small fAX and/or fCX
- // this has much better numerical stability
- // see NRC chapter 5-6 (thanks THB!)
+ // calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAY, rResults);
- impCheckExtremumResult(fCY / fQ, rResults);
+ if( !fTools::equalZero(fS) ) // ignore root multiplicity
+ impCheckExtremumResult(fCY / fQ, rResults);
}
}
else if( !fTools::equalZero(fBY) )
@@ -1047,29 +1045,29 @@ namespace basegfx
int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
{
// the distance from the bezier to a line through start and end
- // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t),-BEZIERx(t))
+ // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx)
// this distance becomes zero for at least t==0 and t==1
// its extrema that are between 0..1 are interesting as split candidates
// its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
- const double fA = 3 * (maEndPoint.getX() - maControlPointB.getX()) * aRelativeEndPoint.getY()
- - 3 * (maEndPoint.getY() - maControlPointB.getY()) * aRelativeEndPoint.getX();
- const double fB = (maControlPointB.getX() - maControlPointA.getX()) * aRelativeEndPoint.getY()
- - (maControlPointB.getY() - maControlPointA.getY()) * aRelativeEndPoint.getX();
+ const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY()
+ - (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX();
+ const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY()
+ - (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX();
const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
- (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
- // test for degenerated case: non-cubic curve
+ // test for degenerated case: order<2
if( fTools::equalZero(fA) )
{
- // test for degenerated case: straight line
+ // test for degenerated case: order==0
if( fTools::equalZero(fB) )
return 0;
- // degenerated case: quadratic bezier
+ // solving the order==1 polynomial is trivial
pResult[0] = -fC / (2*fB);
- // test root: ignore it when it is outside the curve
+ // test root and ignore it when it is outside the curve
int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
return nCount;
}
@@ -1079,21 +1077,22 @@ namespace basegfx
const double fD = fB*fB - fA*fC;
if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO
{
- // calculate the first root
+ // calculate first root (avoiding a numerically unstable subtraction)
const double fS = sqrt(fD);
- const double fQ = fB + ((fB >= 0) ? +fS : -fS);
+ const double fQ = -(fB + ((fB >= 0) ? +fS : -fS));
pResult[0] = fQ / fA;
- // test root: ignore it when it is outside the curve
- int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
+ // ignore root when it is outside the curve
+ static const double fEps = 1e-9;
+ int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps));
- // ignore multiplicit roots
+ // ignore root multiplicity
if( !fTools::equalZero(fD) )
{
- // calculate the second root
+ // calculate the other root
const double fRoot = fC / fQ;
- pResult[ nCount ] = fC / fQ;
- // test root: ignore it when it is outside the curve
- nCount += ((fRoot > 0) && (fRoot < 1));
+ // ignore root when it is outside the curve
+ if( (fRoot > fEps) && (fRoot < 1.0-fEps) )
+ pResult[ nCount++ ] = fRoot;
}
return nCount;
diff --git a/basegfx/test/makefile.mk b/basegfx/test/makefile.mk
index 2c0f30c291a9..09d8b805f9f5 100644
--- a/basegfx/test/makefile.mk
+++ b/basegfx/test/makefile.mk
@@ -36,6 +36,13 @@ ENABLE_EXCEPTIONS=TRUE
.INCLUDE : settings.mk
+#building with stlport, but cppunit was not built with stlport
+.IF "$(USE_SYSTEM_STL)"!="YES"
+.IF "$(SYSTEM_CPPUNIT)"=="YES"
+CFLAGSCXX+=-DADAPT_EXT_STL
+.ENDIF
+.ENDIF
+
CFLAGSCXX += $(CPPUNIT_CFLAGS)
# --- Common ----------------------------------------------------------