diff options
author | Jan Holesovsky <kendy@suse.cz> | 2011-03-18 15:55:08 +0100 |
---|---|---|
committer | Jan Holesovsky <kendy@suse.cz> | 2011-03-18 15:55:08 +0100 |
commit | 4fdd55226d2972e3a256426db3122ac23b0615c6 (patch) | |
tree | 23f5b3a68382d6d3b8db0cb5e2537ed74a228d7c /basegfx | |
parent | c3d5444d84e18fa82235bb9d419861ac5e54f544 (diff) | |
parent | e1028d9225bc47922c387aa462887c7643bc6c40 (diff) |
Merge remote-tracking branch 'origin/integration/dev300_m101'
Conflicts:
comphelper/source/misc/servicedecl.cxx
i18npool/source/breakiterator/breakiteratorImpl.cxx
l10ntools/scripts/localize.pl
svl/source/items/itemset.cxx
svl/source/memtools/svarray.cxx
svl/source/numbers/zformat.cxx
svtools/source/brwbox/brwbox1.cxx
tools/source/stream/strmwnt.cxx
vcl/inc/vcl/graphite_adaptors.hxx
vcl/inc/vcl/graphite_layout.hxx
vcl/inc/vcl/graphite_serverfont.hxx
vcl/source/control/imgctrl.cxx
vcl/source/gdi/outdev.cxx
vcl/source/gdi/outdev3.cxx
vcl/source/glyphs/gcach_ftyp.cxx
vcl/source/glyphs/graphite_adaptors.cxx
vcl/source/glyphs/graphite_layout.cxx
vcl/source/window/winproc.cxx
vcl/unx/source/fontmanager/fontconfig.cxx
Diffstat (limited to 'basegfx')
-rw-r--r-- | basegfx/source/curve/b2dcubicbezier.cxx | 67 | ||||
-rw-r--r-- | basegfx/test/makefile.mk | 7 |
2 files changed, 40 insertions, 34 deletions
diff --git a/basegfx/source/curve/b2dcubicbezier.cxx b/basegfx/source/curve/b2dcubicbezier.cxx index 3e7fdedeeee8..18b72fabb819 100644 --- a/basegfx/source/curve/b2dcubicbezier.cxx +++ b/basegfx/source/curve/b2dcubicbezier.cxx @@ -979,10 +979,10 @@ namespace basegfx // calculate the x-extrema parameters by zeroing first x-derivative // of the cubic bezier's parametric formula, which results in a // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX - const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint); - const double fAX = 3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX(); - const double fBX = 2 * maControlPointA.getX() - maControlPointB.getX() - maStartPoint.getX(); - double fCX(maControlPointA.getX() - maStartPoint.getX()); + const B2DPoint aControlDiff( maControlPointA - maControlPointB ); + double fCX = maControlPointA.getX() - maStartPoint.getX(); + const double fBX = fCX + aControlDiff.getX(); + const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX()); if(fTools::equalZero(fCX)) { @@ -997,12 +997,11 @@ namespace basegfx if( fD >= 0.0 ) { const double fS = sqrt(fD); - // same as above but for very small fAX and/or fCX - // this has much better numerical stability - // see NRC chapter 5-6 (thanks THB!) + // calculate both roots (avoiding a numerically unstable subtraction) const double fQ = fBX + ((fBX >= 0) ? +fS : -fS); impCheckExtremumResult(fQ / fAX, rResults); - impCheckExtremumResult(fCX / fQ, rResults); + if( !fTools::equalZero(fS) ) // ignore root multiplicity + impCheckExtremumResult(fCX / fQ, rResults); } } else if( !fTools::equalZero(fBX) ) @@ -1012,9 +1011,9 @@ namespace basegfx } // calculate the y-extrema parameters by zeroing first y-derivative - const double fAY = 3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY(); - const double fBY = 2 * maControlPointA.getY() - maControlPointB.getY() - maStartPoint.getY(); - double fCY(maControlPointA.getY() - maStartPoint.getY()); + double fCY = maControlPointA.getY() - maStartPoint.getY(); + const double fBY = fCY + aControlDiff.getY(); + const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY()); if(fTools::equalZero(fCY)) { @@ -1026,15 +1025,14 @@ namespace basegfx { // derivative is polynomial of order 2 => use binomial formula const double fD = fBY*fBY - fAY*fCY; - if( fD >= 0 ) + if( fD >= 0.0 ) { const double fS = sqrt(fD); - // same as above but for very small fAX and/or fCX - // this has much better numerical stability - // see NRC chapter 5-6 (thanks THB!) + // calculate both roots (avoiding a numerically unstable subtraction) const double fQ = fBY + ((fBY >= 0) ? +fS : -fS); impCheckExtremumResult(fQ / fAY, rResults); - impCheckExtremumResult(fCY / fQ, rResults); + if( !fTools::equalZero(fS) ) // ignore root multiplicity + impCheckExtremumResult(fCY / fQ, rResults); } } else if( !fTools::equalZero(fBY) ) @@ -1047,29 +1045,29 @@ namespace basegfx int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const { // the distance from the bezier to a line through start and end - // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t),-BEZIERx(t)) + // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx) // this distance becomes zero for at least t==0 and t==1 // its extrema that are between 0..1 are interesting as split candidates // its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint); - const double fA = 3 * (maEndPoint.getX() - maControlPointB.getX()) * aRelativeEndPoint.getY() - - 3 * (maEndPoint.getY() - maControlPointB.getY()) * aRelativeEndPoint.getX(); - const double fB = (maControlPointB.getX() - maControlPointA.getX()) * aRelativeEndPoint.getY() - - (maControlPointB.getY() - maControlPointA.getY()) * aRelativeEndPoint.getX(); + const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY() + - (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX(); + const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY() + - (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX(); const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY() - (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX(); - // test for degenerated case: non-cubic curve + // test for degenerated case: order<2 if( fTools::equalZero(fA) ) { - // test for degenerated case: straight line + // test for degenerated case: order==0 if( fTools::equalZero(fB) ) return 0; - // degenerated case: quadratic bezier + // solving the order==1 polynomial is trivial pResult[0] = -fC / (2*fB); - // test root: ignore it when it is outside the curve + // test root and ignore it when it is outside the curve int nCount = ((pResult[0] > 0) && (pResult[0] < 1)); return nCount; } @@ -1079,21 +1077,22 @@ namespace basegfx const double fD = fB*fB - fA*fC; if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO { - // calculate the first root + // calculate first root (avoiding a numerically unstable subtraction) const double fS = sqrt(fD); - const double fQ = fB + ((fB >= 0) ? +fS : -fS); + const double fQ = -(fB + ((fB >= 0) ? +fS : -fS)); pResult[0] = fQ / fA; - // test root: ignore it when it is outside the curve - int nCount = ((pResult[0] > 0) && (pResult[0] < 1)); + // ignore root when it is outside the curve + static const double fEps = 1e-9; + int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps)); - // ignore multiplicit roots + // ignore root multiplicity if( !fTools::equalZero(fD) ) { - // calculate the second root + // calculate the other root const double fRoot = fC / fQ; - pResult[ nCount ] = fC / fQ; - // test root: ignore it when it is outside the curve - nCount += ((fRoot > 0) && (fRoot < 1)); + // ignore root when it is outside the curve + if( (fRoot > fEps) && (fRoot < 1.0-fEps) ) + pResult[ nCount++ ] = fRoot; } return nCount; diff --git a/basegfx/test/makefile.mk b/basegfx/test/makefile.mk index 2c0f30c291a9..09d8b805f9f5 100644 --- a/basegfx/test/makefile.mk +++ b/basegfx/test/makefile.mk @@ -36,6 +36,13 @@ ENABLE_EXCEPTIONS=TRUE .INCLUDE : settings.mk +#building with stlport, but cppunit was not built with stlport +.IF "$(USE_SYSTEM_STL)"!="YES" +.IF "$(SYSTEM_CPPUNIT)"=="YES" +CFLAGSCXX+=-DADAPT_EXT_STL +.ENDIF +.ENDIF + CFLAGSCXX += $(CPPUNIT_CFLAGS) # --- Common ---------------------------------------------------------- |