summaryrefslogtreecommitdiff
path: root/basegfx
diff options
context:
space:
mode:
authorhdu <duerr@sun.com>2009-10-23 11:02:48 +0200
committerhdu <duerr@sun.com>2009-10-23 11:02:48 +0200
commitf4b316f0117ef507758dfa5c5a1038e0870eded6 (patch)
treee9c3d5b7e4a531c9e2dc2910f98025a21acda36d /basegfx
parent406092f60abbb258bbd1fc6f2d09e7a669af943b (diff)
#i106127# perf: ignore multiplicit solutions in maxdist calculation
Diffstat (limited to 'basegfx')
-rw-r--r--basegfx/source/curve/b2dcubicbezier.cxx34
1 files changed, 22 insertions, 12 deletions
diff --git a/basegfx/source/curve/b2dcubicbezier.cxx b/basegfx/source/curve/b2dcubicbezier.cxx
index 38d783e9651d..83c620df7870 100644
--- a/basegfx/source/curve/b2dcubicbezier.cxx
+++ b/basegfx/source/curve/b2dcubicbezier.cxx
@@ -1060,6 +1060,7 @@ namespace basegfx
const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
- (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
+ // test for degenerated case: non-cubic curve
if( fTools::equalZero(fA) )
{
// test for degenerated case: straight line
@@ -1068,25 +1069,34 @@ namespace basegfx
// degenerated case: quadratic bezier
pResult[0] = -fC / (2*fB);
- if( pResult[0] < 0 || pResult[0]>1)
- return 0;
- return 1;
+
+ // test root: ignore it when it is outside the curve
+ int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
+ return nCount;
}
- // derivative is polynomial of order 2 => use binomial formula
+ // derivative is polynomial of order 2
+ // check if the polynomial has non-imaginary roots
const double fD = fB*fB - fA*fC;
- if( fD >= 0.0 )
+ if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO
{
+ // calculate the first root
const double fS = sqrt(fD);
const double fQ = fB + ((fB >= 0) ? +fS : -fS);
pResult[0] = fQ / fA;
- pResult[1] = fC / fQ;
- int nCount = 2;
- if( pResult[1] < 0 || pResult[1]>1)
- --nCount;
- if( pResult[0] < 0 || pResult[0]>1)
- if( --nCount)
- pResult[0] = pResult[1];
+ // test root: ignore it when it is outside the curve
+ int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
+
+ // ignore multiplicit roots
+ if( !fTools::equalZero(fD) )
+ {
+ // calculate the second root
+ const double fRoot = fC / fQ;
+ pResult[ nCount ] = fC / fQ;
+ // test root: ignore it when it is outside the curve
+ nCount += ((fRoot > 0) && (fRoot < 1));
+ }
+
return nCount;
}