diff options
author | Regina Henschel <rb.henschel@t-online.de> | 2011-06-06 19:31:56 +0200 |
---|---|---|
committer | Fridrich Štrba <fridrich.strba@bluewin.ch> | 2011-06-06 19:31:56 +0200 |
commit | 6a8f23ec27e9fd55411f9536fb3fdfea2b6cd8bd (patch) | |
tree | b3a5ec4b42c99c911c6d2aad574155f553226fdd /chart2/source | |
parent | b7b71077b63dbb1b58330cea5a649278e763c361 (diff) |
Adapt smoothing with splines to ODF1.2
Diffstat (limited to 'chart2/source')
-rw-r--r-- | chart2/source/view/charttypes/Splines.cxx | 757 | ||||
-rw-r--r-- | chart2/source/view/charttypes/Splines.hxx | 6 |
2 files changed, 605 insertions, 158 deletions
diff --git a/chart2/source/view/charttypes/Splines.cxx b/chart2/source/view/charttypes/Splines.cxx index 6b1d1007b700..56e7740f2d68 100644 --- a/chart2/source/view/charttypes/Splines.cxx +++ b/chart2/source/view/charttypes/Splines.cxx @@ -46,17 +46,6 @@ using namespace ::com::sun::star; namespace { -template< typename T > -struct lcl_EqualsFirstDoubleOfPair : ::std::binary_function< ::std::pair< double, T >, ::std::pair< double, T >, bool > -{ - inline bool operator() ( const ::std::pair< double, T > & rOne, const ::std::pair< double, T > & rOther ) - { - return ( ::rtl::math::approxEqual( rOne.first, rOther.first ) ); - } -}; - -//----------------------------------------------------------------------------- - typedef ::std::pair< double, double > tPointType; typedef ::std::vector< tPointType > tPointVecType; typedef tPointVecType::size_type lcl_tSizeType; @@ -79,6 +68,16 @@ public: double fY1FirstDerivation, double fYnFirstDerivation ); + + /** @descr creates an object that calculates cublic splines on construction + for the special case of periodic cubic spline + + @param rSortedPoints the points for which splines shall be calculated, + they need to be sorted in x values. First and last y value must be equal + */ + lcl_SplineCalculation( const tPointVecType & rSortedPoints); + + /** @descr this function corresponds to the function splint in [1]. [1] Numerical Recipies in C, 2nd edition @@ -98,8 +97,8 @@ private: double m_fYpN; // these values are cached for performance reasons - tPointVecType::size_type m_nKLow; - tPointVecType::size_type m_nKHigh; + lcl_tSizeType m_nKLow; + lcl_tSizeType m_nKHigh; double m_fLastInterpolatedValue; /** @descr this function corresponds to the function spline in [1]. @@ -109,6 +108,22 @@ private: Section 3.3, page 115 */ void Calculate(); + + /** @descr this function corresponds to the algoritm 4.76 in [2] and + theorem 5.3.7 in [3] + + [2] Engeln-Mllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen + Springer, Berlin; Auflage: 9., berarb. und erw. A. (8. Dezember 2004) + Section 4.10.2, page 175 + + [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur + Veranstaltung im WS 2007/2008 + Fachhochschule Aachen, 2009-09-19 + Numerik_01.pdf, downloaded 2011-04-19 via + http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191 + Section 5.3, page 129 + */ + void CalculatePeriodic(); }; //----------------------------------------------------------------------------- @@ -124,21 +139,32 @@ lcl_SplineCalculation::lcl_SplineCalculation( m_nKHigh( rSortedPoints.size() - 1 ) { ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); - - // remove points that have equal x-values - m_aPoints.erase( ::std::unique( m_aPoints.begin(), m_aPoints.end(), - lcl_EqualsFirstDoubleOfPair< double >() ), - m_aPoints.end() ); Calculate(); } +//----------------------------------------------------------------------------- + +lcl_SplineCalculation::lcl_SplineCalculation( + const tPointVecType & rSortedPoints) + : m_aPoints( rSortedPoints ), + m_fYp1( 0.0 ), /*dummy*/ + m_fYpN( 0.0 ), /*dummy*/ + m_nKLow( 0 ), + m_nKHigh( rSortedPoints.size() - 1 ) +{ + ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); + CalculatePeriodic(); +} +//----------------------------------------------------------------------------- + + void lcl_SplineCalculation::Calculate() { if( m_aPoints.size() <= 1 ) return; // n is the last valid index to m_aPoints - const tPointVecType::size_type n = m_aPoints.size() - 1; + const lcl_tSizeType n = m_aPoints.size() - 1; ::std::vector< double > u( n ); m_aSecDerivY.resize( n + 1, 0.0 ); @@ -156,9 +182,9 @@ void lcl_SplineCalculation::Calculate() ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 ); } - for( tPointVecType::size_type i = 1; i < n; ++i ) + for( lcl_tSizeType i = 1; i < n; ++i ) { - ::std::pair< double, double > + tPointType p_i = m_aPoints[ i ], p_im1 = m_aPoints[ i - 1 ], p_ip1 = m_aPoints[ i + 1 ]; @@ -196,19 +222,164 @@ void lcl_SplineCalculation::Calculate() // note: the algorithm in [1] iterates from n-1 to 0, but as size_type // may be (usuall is) an unsigned type, we can not write k >= 0, as this // is always true. - for( tPointVecType::size_type k = n; k > 0; --k ) + for( lcl_tSizeType k = n; k > 0; --k ) { ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ]; } } +void lcl_SplineCalculation::CalculatePeriodic() +{ + if( m_aPoints.size() <= 1 ) + return; + + // n is the last valid index to m_aPoints + const lcl_tSizeType n = m_aPoints.size() - 1; + + // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2], + // vector z in Rtranspose z = a and Dr=z in [2] + ::std::vector< double > u( n + 1, 0.0 ); + + // used for vector c in A*c=f and vector x in Ax=a in [2] + m_aSecDerivY.resize( n + 1, 0.0 ); + + // diagonal of matrix A, used index 1 to n + ::std::vector< double > Adiag( n + 1, 0.0 ); + + // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n] + ::std::vector< double > Aupper( n + 1, 0.0 ); + + // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n + ::std::vector< double > Ddiag( n+1, 0.0 ); + + // right column of matrix R, used index 1 to n-2 + ::std::vector< double > Rright( n-1, 0.0 ); + + // secondary diagonal of matrix R, used index 1 to n-1 + ::std::vector< double > Rupper( n, 0.0 ); + + if (n<4) + { + if (n==3) + { // special handling of three polynomials, that are four points + double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ; + double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ; + double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ; + double xDiff2p1 = xDiff2 + xDiff1; + double xDiff0p2 = xDiff0 + xDiff2; + double xDiff1p0 = xDiff1 + xDiff0; + double fFaktor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0); + double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0; + double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1; + double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2; + m_aSecDerivY[ 1 ] = fFaktor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2); + m_aSecDerivY[ 2 ] = fFaktor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0); + m_aSecDerivY[ 3 ] = fFaktor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1); + m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ]; + } + else if (n==2) + { + // special handling of two polynomials, that are three points + double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; + double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first; + double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1); + m_aSecDerivY[ 1 ] = fHelp ; + m_aSecDerivY[ 2 ] = -fHelp ; + m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ; + } + else + { + // should be handled with natural spline, periodic not possible. + } + } + else + { + double xDiff_i =1.0; // values are dummy; + double xDiff_im1 =1.0; + double yDiff_i = 1.0; + double yDiff_im1 = 1.0; + // fill matrix A and fill right side vector u + for( lcl_tSizeType i=1; i<n; ++i ) + { + xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first; + xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first; + yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1; + yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i; + Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i); + Aupper[ i ] = xDiff_i; + u [ i ] = 3 * (yDiff_i - yDiff_im1); + } + xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first; + xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; + yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1; + yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i; + Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i); + Aupper[ n ] = xDiff_i; + u [ n ] = 3 * (yDiff_i - yDiff_im1); + + // decomposite A=(R transpose)*D*R + Ddiag[1] = Adiag[1]; + Rupper[1] = Aupper[1] / Ddiag[1]; + Rright[1] = Aupper[n] / Ddiag[1]; + for( lcl_tSizeType i=2; i<=n-2; ++i ) + { + Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ]; + Rupper[ i ] = Aupper[ i ] / Ddiag[ i ]; + Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ]; + } + Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ]; + Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ]; + double fSum = 0.0; + for ( lcl_tSizeType i=1; i<=n-2; ++i ) + { + fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ]; + } + Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]! + + // solve forward (R transpose)*z=u, overwrite u with z + for ( lcl_tSizeType i=2; i<=n-1; ++i ) + { + u[ i ] -= u[ i-1 ]* Rupper[ i-1 ]; + } + fSum = 0.0; + for ( lcl_tSizeType i=1; i<=n-2; ++i ) + { + fSum += Rright[ i ] * u[ i ]; + } + u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ]; + + // solve forward D*r=z, z is in u, overwrite u with r + for ( lcl_tSizeType i=1; i<=n; ++i ) + { + u[ i ] = u[i] / Ddiag[ i ]; + } + + // solve backward R*x= r, r is in u + m_aSecDerivY[ n ] = u[ n ]; + m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ]; + for ( lcl_tSizeType i=n-2; i>=1; --i) + { + m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ]; + } + // periodic + m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ]; + } + + // adapt m_aSecDerivY for usage in GetInterpolatedValue() + for( lcl_tSizeType i = 0; i <= n ; ++i ) + { + m_aSecDerivY[ i ] *= 2.0; + } + +} + double lcl_SplineCalculation::GetInterpolatedValue( double x ) { OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) && ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ), "Trying to extrapolate" ); - const tPointVecType::size_type n = m_aPoints.size() - 1; + const lcl_tSizeType n = m_aPoints.size() - 1; if( x < m_fLastInterpolatedValue ) { m_nKLow = 0; @@ -218,7 +389,7 @@ double lcl_SplineCalculation::GetInterpolatedValue( double x ) // first initialization is done in CTOR while( m_nKHigh - m_nKLow > 1 ) { - tPointVecType::size_type k = ( m_nKHigh + m_nKLow ) / 2; + lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2; if( m_aPoints[ k ].first > x ) m_nKHigh = k; else @@ -252,63 +423,142 @@ double lcl_SplineCalculation::GetInterpolatedValue( double x ) //----------------------------------------------------------------------------- -//create knot vector for B-spline -double* createTVector( sal_Int32 n, sal_Int32 k ) -{ - double* t = new double [n + k + 1]; - for (sal_Int32 i=0; i<=n+k; i++ ) - { - if(i < k) - t[i] = 0; - else if(i <= n) - t[i] = i-k+1; +// helper methods for B-spline + +// Create parameter t_0 to t_n using the centripetal method with a power of 0.5 +bool createParameterT(const tPointVecType aUniquePoints, double* t) +{ // precondition: no adjacent identical points + // postcondition: 0 = t_0 < t_1 < ... < t_n = 1 + bool bIsSuccessful = true; + const lcl_tSizeType n = aUniquePoints.size() - 1; + t[0]=0.0; + double dx = 0.0; + double dy = 0.0; + double fDiffMax = 1.0; //dummy values + double fDenominator = 0.0; // initialized for summing up + for (lcl_tSizeType i=1; i<=n ; ++i) + { // 4th root(dx^2+dy^2) + dx = aUniquePoints[i].first - aUniquePoints[i-1].first; + dy = aUniquePoints[i].second - aUniquePoints[i-1].second; + // scaling to avoid underflow or overflow + fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy); + if (fDiffMax == 0.0) + { + bIsSuccessful = false; + break; + } else - t[i] = n-k+2; + { + dx /= fDiffMax; + dy /= fDiffMax; + fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); + } } - return t; -} + if (fDenominator == 0.0) + { + bIsSuccessful = false; + } + if (bIsSuccessful) + { + for (lcl_tSizeType j=1; j<=n ; ++j) + { + double fNumerator = 0.0; + for (lcl_tSizeType i=1; i<=j ; ++i) + { + dx = aUniquePoints[i].first - aUniquePoints[i-1].first; + dy = aUniquePoints[i].second - aUniquePoints[i-1].second; + fDiffMax = (abs(dx)>abs(dy)) ? abs(dx) : abs(dy); + // same as above, so should not be zero + dx /= fDiffMax; + dy /= fDiffMax; + fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); + } + t[j] = fNumerator / fDenominator; -//calculate left knot vector -double TLeft (double x, sal_Int32 i, sal_Int32 k, const double *t ) -{ - double deltaT = t[i + k - 1] - t[i]; - return (deltaT == 0.0) - ? 0.0 - : (x - t[i]) / deltaT; + } + // postcondition check + t[n] = 1.0; + double fPrevious = 0.0; + for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i) + { + if (fPrevious >= t[i]) + { + bIsSuccessful = false; + } + else + { + fPrevious = t[i]; + } + } + } + return bIsSuccessful; } -//calculate right knot vector -double TRight(double x, sal_Int32 i, sal_Int32 k, const double *t ) -{ - double deltaT = t[i + k] - t[i + 1]; - return (deltaT == 0.0) - ? 0.0 - : (t[i + k] - x) / deltaT; +void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u) +{ // precondition: 0 = t_0 < t_1 < ... < t_n = 1 + for (lcl_tSizeType j = 0; j <= p; ++j) + { + u[j] = 0.0; + } + double fSum = 0.0; + for (lcl_tSizeType j = 1; j <= n-p; ++j ) + { + fSum = 0.0; + for (lcl_tSizeType i = j; i <= j+p-1; ++i) + { + fSum += t[i]; + } + u[j+p] = fSum / p ; + } + for (lcl_tSizeType j = n+1; j <= n+1+p; ++j) + { + u[j] = 1.0; + } } -//calculate weight vector -void BVector(double x, sal_Int32 n, sal_Int32 k, double *b, const double *t) +void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN) { - sal_Int32 i = 0; - for( i=0; i<=n+k; i++ ) - b[i]=0; + // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero + double fRightFactor = 0.0; + double fLeftFactor = 0.0; + + // initialize with indicator function degree 0 + rowN[p] = 1.0; // all others are zero - sal_Int32 i0 = (sal_Int32)floor(x) + k - 1; - b [i0] = 1; + // calculate up to degree p + for (sal_uInt32 s = 1; s <= p; ++s) + { + // first element + fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] ); + // i-s "true index" - (i-p)"shift" = p-s + rowN[p-s] = fRightFactor * rowN[p-s+1]; - for( sal_Int32 j=2; j<=k; j++ ) - for( i=0; i<=i0; i++ ) - b[i] = TLeft(x, i, j, t) * b[i] + TRight(x, i, j, t) * b [i + 1]; + // middle elements + for (sal_uInt32 j = s-1; j>=1 ; --j) + { + fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ; + fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] ); + // i-j "true index" - (i-p)"shift" = p-j + rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1]; + } + + // last element + fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] ); + // i "true index" - (i-p)"shift" = p + rowN[p] = fLeftFactor * rowN[p]; + } } } // anonymous namespace //----------------------------------------------------------------------------- +// Calculates uniform parametric splines with subinterval length 1, +// according ODF1.2 part 1, chapter 'chart interpolation'. void SplineCalculater::CalculateCubicSplines( const drawing::PolyPolygonShape3D& rInput , drawing::PolyPolygonShape3D& rResult - , sal_Int32 nGranularity ) + , sal_uInt32 nGranularity ) { OSL_PRECOND( nGranularity > 0, "Granularity is invalid" ); @@ -316,7 +566,7 @@ void SplineCalculater::CalculateCubicSplines( rResult.SequenceY.realloc(0); rResult.SequenceZ.realloc(0); - sal_Int32 nOuterCount = rInput.SequenceX.getLength(); + sal_uInt32 nOuterCount = rInput.SequenceX.getLength(); if( !nOuterCount ) return; @@ -324,30 +574,23 @@ void SplineCalculater::CalculateCubicSplines( rResult.SequenceY.realloc(nOuterCount); rResult.SequenceZ.realloc(nOuterCount); - for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) + for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) { if( rInput.SequenceX[nOuter].getLength() <= 1 ) continue; //we need at least two points - sal_Int32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 + sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); - // #i13699# The curve gets a parameter and then for each coordinate a - // separate spline will be calculated using the parameter as first argument - // and the point coordinate as second argument. Therefore the points need - // not to be sorted in its x-coordinates. The parameter is sorted by - // construction. - ::std::vector < double > aParameter(nMaxIndexPoints+1); aParameter[0]=0.0; - for( sal_Int32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ ) + for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ ) { - // The euclidian distance leads to curve loops for functions having single extreme points - // use increment of 1 instead aParameter[nIndex]=aParameter[nIndex-1]+1; } + // Split the calculation to X, Y and Z coordinate tPointVecType aInputX; aInputX.resize(nMaxIndexPoints+1); @@ -355,7 +598,7 @@ void SplineCalculater::CalculateCubicSplines( aInputY.resize(nMaxIndexPoints+1); tPointVecType aInputZ; aInputZ.resize(nMaxIndexPoints+1); - for (sal_Int32 nN=0;nN<=nMaxIndexPoints; nN++ ) + for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ ) { aInputX[ nN ].first=aParameter[nN]; aInputX[ nN ].second=pOldX[ nN ]; @@ -370,16 +613,20 @@ void SplineCalculater::CalculateCubicSplines( double fXDerivation; double fYDerivation; double fZDerivation; + lcl_SplineCalculation* aSplineX; + lcl_SplineCalculation* aSplineY; + // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in + // a data series are equal. No spline calculation needed, but copy + // coordinate to output + if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] && pOldY[ 0 ] == pOldY[nMaxIndexPoints] && - pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] ) - { - // #i101050# avoid a corner in closed lines, which are smoothed by spline - // This derivation are special for parameter of kind 0,1,2,3... If you - // change generating parameters (see above), then adapt derivations too.) - fXDerivation = 0.5 * (pOldX[1]-pOldX[nMaxIndexPoints-1]); - fYDerivation = 0.5 * (pOldY[1]-pOldY[nMaxIndexPoints-1]); - fZDerivation = 0.5 * (pOldZ[1]-pOldZ[nMaxIndexPoints-1]); + pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] && + nMaxIndexPoints >=2 ) + { // periodic spline + aSplineX = new lcl_SplineCalculation( aInputX) ; + aSplineY = new lcl_SplineCalculation( aInputY) ; + // aSplineZ = new lcl_SplineCalculation( aInputZ) ; } else // generate the kind "natural spline" { @@ -388,10 +635,10 @@ void SplineCalculater::CalculateCubicSplines( fXDerivation = fInfty; fYDerivation = fInfty; fZDerivation = fInfty; + aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation ); + aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation ); + // aSplineZ = new lcl_SplineCalculation( aInputZ, fZDerivation, fZDerivation ); } - lcl_SplineCalculation aSplineX( aInputX, fXDerivation, fXDerivation ); - lcl_SplineCalculation aSplineY( aInputY, fYDerivation, fYDerivation ); - lcl_SplineCalculation aSplineZ( aInputZ, fZDerivation, fZDerivation ); // fill result polygon with calculated values rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1); @@ -402,13 +649,13 @@ void SplineCalculater::CalculateCubicSplines( double* pNewY = rResult.SequenceY[nOuter].getArray(); double* pNewZ = rResult.SequenceZ[nOuter].getArray(); - sal_Int32 nNewPointIndex = 0; // Index in result points + sal_uInt32 nNewPointIndex = 0; // Index in result points // needed for inner loop double fInc; // step for intermediate points - sal_Int32 nj; // for loop + sal_uInt32 nj; // for loop double fParam; // a intermediate parameter value - for( sal_Int32 ni = 0; ni < nMaxIndexPoints; ni++ ) + for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ ) { // given point is surely a curve point pNewX[nNewPointIndex] = pOldX[ni]; @@ -422,9 +669,10 @@ void SplineCalculater::CalculateCubicSplines( { fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) ); - pNewX[nNewPointIndex]=aSplineX.GetInterpolatedValue( fParam ); - pNewY[nNewPointIndex]=aSplineY.GetInterpolatedValue( fParam ); - pNewZ[nNewPointIndex]=aSplineZ.GetInterpolatedValue( fParam ); + pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam ); + pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam ); + // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam ); + pNewZ[nNewPointIndex] = pOldZ[ni]; nNewPointIndex++; } } @@ -432,18 +680,34 @@ void SplineCalculater::CalculateCubicSplines( pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints]; pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints]; pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints]; + delete aSplineX; + delete aSplineY; + // delete aSplineZ; } } + +// The implementation follows closely ODF1.2 spec, chapter chart:interpolation +// using the same names as in spec as far as possible, without prefix. +// More details can be found on +// Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes +// Unit 9: Interpolation and Approximation/Curve Global Interpolation +// Department of Computer Science, Michigan Technological University +// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/ +// [last called 2011-05-20] void SplineCalculater::CalculateBSplines( const ::com::sun::star::drawing::PolyPolygonShape3D& rInput , ::com::sun::star::drawing::PolyPolygonShape3D& rResult - , sal_Int32 nGranularity - , sal_Int32 nDegree ) + , sal_uInt32 nResolution + , sal_uInt32 nDegree ) { - // #issue 72216# - // k is the order of the BSpline, nDegree is the degree of its polynoms - sal_Int32 k = nDegree + 1; + // nResolution is ODF1.2 file format attribut chart:spline-resolution and + // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition. + // nDegree is ODF1.2 file format attribut chart:spline-order and + // ODF1.2 spec variable p + OSL_ASSERT( nResolution > 1 ); + OSL_ASSERT( nDegree >= 1 ); + sal_uInt32 p = nDegree; rResult.SequenceX.realloc(0); rResult.SequenceY.realloc(0); @@ -460,74 +724,257 @@ void SplineCalculater::CalculateBSplines( for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) { if( rInput.SequenceX[nOuter].getLength() <= 1 ) - continue; // need at least 2 control points - - sal_Int32 n = rInput.SequenceX[nOuter].getLength()-1; // maximum index of control points - - double fCurveparam =0.0; // parameter for the curve - // 0<= fCurveparam < fMaxCurveparam - double fMaxCurveparam = 2.0+ n - k; - if (fMaxCurveparam <= 0.0) - return; // not enough control points for desired spline order - - if (nGranularity < 1) - return; //need at least 1 line for each part beween the control points + continue; // need at least 2 points, next piece of the series + // Copy input to vector of points and remove adjacent double points. The + // Z-coordinate is equal for all points in a series and holds the depth + // in 3D mode, simple copying is enough. + lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); + double fZCoordinate = pOldZ[0]; + tPointVecType aPointsIn; + aPointsIn.resize(nMaxIndexPoints+1); + for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i ) + { + aPointsIn[ i ].first = pOldX[i]; + aPointsIn[ i ].second = pOldY[i]; + } + aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()), + aPointsIn.end() ); + + // n is the last valid index to the reduced aPointsIn + // There are n+1 valid data points. + const lcl_tSizeType n = aPointsIn.size() - 1; + if (n < 1 || p > n) + continue; // need at least 2 points, degree p needs at least n+1 points + // next piece of series + + double* t = new double [n+1]; + if (!createParameterT(aPointsIn, t)) + { + delete[] t; + continue; // next piece of series + } - // keep this amount of steps to go well with old version - sal_Int32 nNewSectorCount = nGranularity * n; - double fCurveStep = fMaxCurveparam/static_cast< double >(nNewSectorCount); - - double *b = new double [n + k + 1]; // values of blending functions - - const double* t = createTVector(n, k); // knot vector - - rResult.SequenceX[nOuter].realloc(nNewSectorCount+1); - rResult.SequenceY[nOuter].realloc(nNewSectorCount+1); - rResult.SequenceZ[nOuter].realloc(nNewSectorCount+1); - double* pNewX = rResult.SequenceX[nOuter].getArray(); - double* pNewY = rResult.SequenceY[nOuter].getArray(); - double* pNewZ = rResult.SequenceZ[nOuter].getArray(); - - // variables needed inside loop, when calculating one point of output - sal_Int32 nPointIndex =0; //index of given contol points - double fX=0.0; - double fY=0.0; - double fZ=0.0; //coordinates of a new BSpline point - - for(sal_Int32 nNewSector=0; nNewSector<nNewSectorCount; nNewSector++) - { // in first looping fCurveparam has value 0.0 - - // Calculate the values of the blending functions for actual curve parameter - BVector(fCurveparam, n, k, b, t); - - // output point(fCurveparam) = sum over {input point * value of blending function} - fX = 0.0; - fY = 0.0; - fZ = 0.0; - for (nPointIndex=0;nPointIndex<=n;nPointIndex++) + lcl_tSizeType m = n + p + 1; + double* u = new double [m+1]; + createKnotVector(n, p, t, u); + + // The matrix N contains the B-spline basis functions applied to parameters. + // In each row only p+1 adjacent elements are non-zero. The starting + // column in a higher row is equal or greater than in the lower row. + // To store this matrix the non-zero elements are shifted to column 0 + // and the amount of shifting is remembered in an array. + double** aMatN = new double*[n+1]; + for (lcl_tSizeType row = 0; row <=n; ++row) + { + aMatN[row] = new double[p+1]; + for (sal_uInt32 col = 0; col <= p; ++col) + aMatN[row][col] = 0.0; + } + lcl_tSizeType* aShift = new lcl_tSizeType[n+1]; + aMatN[0][0] = 1.0; //all others are zero + aShift[0] = 0; + aMatN[n][0] = 1.0; + aShift[n] = n; + for (lcl_tSizeType k = 1; k<=n-1; ++k) + { // all basis functions are applied to t_k, + // results are elements in row k in matrix N + + // find the one interval with u_i <= t_k < u_(i+1) + // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1 + lcl_tSizeType i = p; + while (!(u[i] <= t[k] && t[k] < u[i+1])) { - fX +=pOldX[nPointIndex]*b[nPointIndex]; - fY +=pOldY[nPointIndex]*b[nPointIndex]; - fZ +=pOldZ[nPointIndex]*b[nPointIndex]; + ++i; } - pNewX[nNewSector] = fX; - pNewY[nNewSector] = fY; - pNewZ[nNewSector] = fZ; - fCurveparam += fCurveStep; //for next looping + // index in reduced matrix aMatN = (index in full matrix N) - (i-p) + aShift[k] = i - p; + + applyNtoParameterT(i, t[k], p, u, aMatN[k]); + } // next row k + + // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn + // aPointsIn is overwritten with C. + // Gaussian elimination is possible without pivoting, see reference + lcl_tSizeType r = 0; // true row index + lcl_tSizeType c = 0; // true column index + double fDivisor = 1.0; // used for diagonal element + double fEliminate = 1.0; // used for the element, that will become zero + double fHelp; + tPointType aHelp; + lcl_tSizeType nHelp; // used in triangle change + bool bIsSuccessful = true; + for (c = 0 ; c <= n && bIsSuccessful; ++c) + { + // search for first non-zero downwards + r = c; + while ( aMatN[r][c-aShift[r]] == 0 && r < n) + { + ++r; + } + if (aMatN[r][c-aShift[r]] == 0.0) + { + // Matrix N is singular, although this is mathematically impossible + bIsSuccessful = false; + } + else + { + // exchange total row r with total row c if necessary + if (r != c) + { + for ( sal_uInt32 i = 0; i <= p ; ++i) + { + fHelp = aMatN[r][i]; + aMatN[r][i] = aMatN[c][i]; + aMatN[c][i] = fHelp; + } + aHelp = aPointsIn[r]; + aPointsIn[r] = aPointsIn[c]; + aPointsIn[c] = aHelp; + nHelp = aShift[r]; + aShift[r] = aShift[c]; + aShift[c] = nHelp; + } + + // divide row c, so that element(c,c) becomes 1 + fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above + for (sal_uInt32 i = 0; i <= p; ++i) + { + aMatN[c][i] /= fDivisor; + } + aPointsIn[c].first /= fDivisor; + aPointsIn[c].second /= fDivisor; + + // eliminate forward, examine row c+1 to n-1 (worst case) + // stop if first non-zero element in row has an higher column as c + // look at nShift for that, elements in nShift are equal or increasing + for ( r = c+1; aShift[r]<=c && r < n; ++r) + { + fEliminate = aMatN[r][0]; + if (fEliminate != 0.0) // else accidentally zero, nothing to do + { + for (sal_uInt32 i = 1; i <= p; ++i) + { + aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i]; + } + aMatN[r][p]=0; + aPointsIn[r].first -= fEliminate * aPointsIn[c].first; + aPointsIn[r].second -= fEliminate * aPointsIn[c].second; + ++aShift[r]; + } + } + } + }// upper triangle form is reached + if( bIsSuccessful) + { + // eliminate backwards, begin with last column + for (lcl_tSizeType cc = n; cc >= 1; --cc ) + { + // In row cc the diagonal element(cc,cc) == 1 and all elements left from + // diagonal are zero and do not influence other rows. + // Full matrix N has semibandwidth < p, therefore element(r,c) is + // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc. + r = cc - 1; + while ( r !=0 && cc-r < p ) + { + fEliminate = aMatN[r][ cc - aShift[r] ]; + if ( fEliminate != 0.0) // else element is accidentically zero, no action needed + { + // row r -= fEliminate * row cc only relevant for right side + aMatN[r][cc - aShift[r]] = 0.0; + aPointsIn[r].first -= fEliminate * aPointsIn[cc].first; + aPointsIn[r].second -= fEliminate * aPointsIn[cc].second; + } + --r; + } + } + } // aPointsIn contains the control points now. + if (bIsSuccessful) + { + // calculate the intermediate points according given resolution + // using deBoor-Cox algorithm + lcl_tSizeType nNewSize = nResolution * n + 1; + rResult.SequenceX[nOuter].realloc(nNewSize); + rResult.SequenceY[nOuter].realloc(nNewSize); + rResult.SequenceZ[nOuter].realloc(nNewSize); + double* pNewX = rResult.SequenceX[nOuter].getArray(); + double* pNewY = rResult.SequenceY[nOuter].getArray(); + double* pNewZ = rResult.SequenceZ[nOuter].getArray(); + pNewX[0] = aPointsIn[0].first; + pNewY[0] = aPointsIn[0].second; + pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal + pNewX[nNewSize -1 ] = aPointsIn[n].first; + pNewY[nNewSize -1 ] = aPointsIn[n].second; + pNewZ[nNewSize -1 ] = fZCoordinate; + double* aP = new double[m+1]; + lcl_tSizeType nLow = 0; + for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex) + { + for (sal_uInt32 nResolutionStep = 1; + nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution); + ++nResolutionStep) + { + lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep; + double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution; + + // get index nLow, so that u[nLow]<= ux < u[nLow +1] + // continue from previous nLow + while ( u[nLow] <= ux) + { + ++nLow; + } + --nLow; + + // x-coordinate + for (lcl_tSizeType i = nLow-p; i <= nLow; ++i) + { + aP[i] = aPointsIn[i].first; + } + for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) + { + double fFactor = 0.0; + for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i) + { + fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); + aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; + } + } + pNewX[nNewIndex] = aP[nLow]; + + // y-coordinate + for (lcl_tSizeType i = nLow - p; i <= nLow; ++i) + { + aP[i] = aPointsIn[i].second; + } + for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) + { + double fFactor = 0.0; + for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i) + { + fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); + aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; + } + } + pNewY[nNewIndex] = aP[nLow]; + pNewZ[nNewIndex] = fZCoordinate; + } + } + delete[] aP; } - // add last control point to BSpline curve - pNewX[nNewSectorCount] = pOldX[n]; - pNewY[nNewSectorCount] = pOldY[n]; - pNewZ[nNewSectorCount] = pOldZ[n]; - + delete[] aShift; + for (lcl_tSizeType row = 0; row <=n; ++row) + { + delete[] aMatN[row]; + } + delete[] aMatN; + delete[] u; delete[] t; - delete[] b; - } + + } // next piece of the series } //............................................................................. diff --git a/chart2/source/view/charttypes/Splines.hxx b/chart2/source/view/charttypes/Splines.hxx index 0e8206fcade1..4f4d10483f0d 100644 --- a/chart2/source/view/charttypes/Splines.hxx +++ b/chart2/source/view/charttypes/Splines.hxx @@ -46,13 +46,13 @@ public: static void CalculateCubicSplines( const ::com::sun::star::drawing::PolyPolygonShape3D& rPoints , ::com::sun::star::drawing::PolyPolygonShape3D& rResult - , sal_Int32 nGranularity ); + , sal_uInt32 nGranularity ); static void CalculateBSplines( const ::com::sun::star::drawing::PolyPolygonShape3D& rPoints , ::com::sun::star::drawing::PolyPolygonShape3D& rResult - , sal_Int32 nGranularity - , sal_Int32 nSplineDepth ); + , sal_uInt32 nGranularity + , sal_uInt32 nSplineDepth ); }; |