diff options
author | Chris Sherlock <chris.sherlock79@gmail.com> | 2017-07-23 03:45:34 +1000 |
---|---|---|
committer | Chris Sherlock <chris.sherlock79@gmail.com> | 2017-07-23 03:45:34 +1000 |
commit | f175e360c60f6970e95907a1c46ff786d1f25594 (patch) | |
tree | c4d3b11a56422516d5468450041694539f36a9ea /sal/rtl | |
parent | f250b04a5ee7795f0104e6a1f6d47ded41df4044 (diff) |
rtl: cleanup equality conditions in math.cxx
Change-Id: I13d898479d883f7905d834c82dc778a9e4078375
Diffstat (limited to 'sal/rtl')
-rw-r--r-- | sal/rtl/math.cxx | 401 |
1 files changed, 248 insertions, 153 deletions
diff --git a/sal/rtl/math.cxx b/sal/rtl/math.cxx index 2db259b86917..338f40d1469f 100644 --- a/sal/rtl/math.cxx +++ b/sal/rtl/math.cxx @@ -46,23 +46,23 @@ static double const n10s[2][n10Count] = { }; // return pow(10.0,nExp) optimized for exponents in the interval [-16,16] -static double getN10Exp( int nExp ) +static double getN10Exp(int nExp) { - if ( nExp < 0 ) + if (nExp < 0) { // && -nExp > 0 necessary for std::numeric_limits<int>::min() // because -nExp = nExp - if ( -nExp <= n10Count && -nExp > 0 ) + if (-nExp <= n10Count && -nExp > 0) return n10s[1][-nExp-1]; - return pow( 10.0, static_cast<double>( nExp ) ); + return pow(10.0, static_cast<double>(nExp)); } - if ( nExp > 0 ) + if (nExp > 0) { - if ( nExp <= n10Count ) + if (nExp <= n10Count) return n10s[0][nExp-1]; - return pow( 10.0, static_cast<double>( nExp ) ); + + return pow(10.0, static_cast<double>(nExp)); } - // ( nExp == 0 ) return 1.0; } @@ -95,7 +95,7 @@ struct StringTraits sal_Int32 * pOffset, sal_Char const * pChars, sal_Int32 nLen) { - assert(pChars != nullptr); + assert(pChars); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } @@ -104,7 +104,7 @@ struct StringTraits sal_Int32 * pOffset, sal_Char const * pStr, sal_Int32 nLen) { - assert(pStr != nullptr); + assert(pStr); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } @@ -132,7 +132,7 @@ struct UStringTraits sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Unicode const * pChars, sal_Int32 nLen) { - assert(pChars != nullptr); + assert(pChars); rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } @@ -153,10 +153,10 @@ struct UStringTraits bool isRepresentableInteger(double fAbsValue) { assert(fAbsValue >= 0.0); - const sal_Int64 kMaxInt = (static_cast<sal_Int64>(1) << 53) - 1; - if (fAbsValue <= static_cast<double>(kMaxInt)) + const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; + if (fAbsValue <= static_cast< double >(kMaxInt)) { - sal_Int64 nInt = static_cast<sal_Int64>(fAbsValue); + sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue); // Check the integer range again because double comparison may yield // true within the precision range. // XXX loplugin:fpcomparison complains about floating-point comparison @@ -164,7 +164,7 @@ bool isRepresentableInteger(double fAbsValue) // this here. double fInt; return (nInt <= kMaxInt && - (!((fInt = static_cast<double>(nInt)) < fAbsValue) && !(fInt > fAbsValue))); + (!((fInt = static_cast< double >(nInt)) < fAbsValue) && !(fInt > fAbsValue))); } return false; } @@ -185,20 +185,22 @@ inline void doubleToString(typename T::String ** pResult, // sign adjustment, instead of testing for fValue<0.0 this will also fetch // -0.0 - bool bSign = rtl::math::isSignBitSet( fValue ); - if( bSign ) + bool bSign = rtl::math::isSignBitSet(fValue); + + if (bSign) fValue = -fValue; - if ( rtl::math::isNan( fValue ) ) + if (rtl::math::isNan(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN"); - if (pResultCapacity == nullptr) + if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } + T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("NaN")); @@ -206,19 +208,21 @@ inline void doubleToString(typename T::String ** pResult, } bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way... - if ( bHuge || rtl::math::isInf( fValue ) ) + if (bHuge || rtl::math::isInf(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF"); - if (pResultCapacity == nullptr) + if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } + if ( bSign ) T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("-")); + T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("INF")); @@ -227,31 +231,34 @@ inline void doubleToString(typename T::String ** pResult, // Use integer representation for integer values that fit into the // mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy. - const sal_Int64 kMaxInt = (static_cast<sal_Int64>(1) << 53) - 1; + const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; if ((eFormat == rtl_math_StringFormat_Automatic || - eFormat == rtl_math_StringFormat_F) && fValue <= static_cast<double>(kMaxInt)) + eFormat == rtl_math_StringFormat_F) && fValue <= static_cast< double >(kMaxInt)) { - sal_Int64 nInt = static_cast<sal_Int64>(fValue); + sal_Int64 nInt = static_cast< sal_Int64 >(fValue); // Check the integer range again because double comparison may yield // true within the precision range. - if (nInt <= kMaxInt && static_cast<double>(nInt) == fValue) + if (nInt <= kMaxInt && static_cast< double >(nInt) == fValue) { if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = 0; else - nDecPlaces = ::std::max<sal_Int32>( ::std::min<sal_Int32>( nDecPlaces, 15), -15); + nDecPlaces = ::std::max< sal_Int32 >(::std::min<sal_Int32>(nDecPlaces, 15), -15); + if (bEraseTrailingDecZeros && nDecPlaces > 0) nDecPlaces = 0; // Round before decimal position. if (nDecPlaces < 0) { - sal_Int64 nRounding = static_cast<sal_Int64>( getN10Exp( -nDecPlaces - 1)); + sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1)); sal_Int64 nTemp = nInt / nRounding; int nDigit = nTemp % 10; nTemp /= 10; + if (nDigit >= 5) ++nTemp; + nTemp *= 10; nTemp *= nRounding; nInt = nTemp; @@ -290,6 +297,7 @@ inline void doubleToString(typename T::String ** pResult, { ::std::swap( pBuf[i], p[-i-1]); } + // Append decimals. if (nDecPlaces > 0) { @@ -298,7 +306,7 @@ inline void doubleToString(typename T::String ** pResult, *p++ = '0'; } - if (pResultCapacity == nullptr) + if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); @@ -311,23 +319,23 @@ inline void doubleToString(typename T::String ** pResult, int nExp = 0; if ( fValue > 0.0 ) { - nExp = static_cast< int >( floor( log10( fValue ) ) ); - fValue /= getN10Exp( nExp ); + nExp = static_cast< int >(floor(log10(fValue))); + fValue /= getN10Exp(nExp); } - switch ( eFormat ) + switch (eFormat) { - case rtl_math_StringFormat_Automatic : + case rtl_math_StringFormat_Automatic: { // E or F depending on exponent magnitude int nPrec; - if ( nExp <= -15 || nExp >= 15 ) // #58531# was <-16, >16 + if (nExp <= -15 || nExp >= 15) // #58531# was <-16, >16 { nPrec = 14; eFormat = rtl_math_StringFormat_E; } else { - if ( nExp < 14 ) + if (nExp < 14) { nPrec = 15 - nExp - 1; eFormat = rtl_math_StringFormat_F; @@ -338,29 +346,33 @@ inline void doubleToString(typename T::String ** pResult, eFormat = rtl_math_StringFormat_F; } } - if ( nDecPlaces == rtl_math_DecimalPlaces_Max ) + + if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = nPrec; } break; + case rtl_math_StringFormat_G : case rtl_math_StringFormat_G1 : case rtl_math_StringFormat_G2 : { // G-Point, similar to sprintf %G - if ( nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance ) + if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance) nDecPlaces = 6; - if ( nExp < -4 || nExp >= nDecPlaces ) + + if (nExp < -4 || nExp >= nDecPlaces) { - nDecPlaces = std::max< sal_Int32 >( 1, nDecPlaces - 1 ); - if( eFormat == rtl_math_StringFormat_G ) + nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1); + + if (eFormat == rtl_math_StringFormat_G) eFormat = rtl_math_StringFormat_E; - else if( eFormat == rtl_math_StringFormat_G2 ) + else if (eFormat == rtl_math_StringFormat_G2) eFormat = rtl_math_StringFormat_E2; - else if( eFormat == rtl_math_StringFormat_G1 ) + else if (eFormat == rtl_math_StringFormat_G1) eFormat = rtl_math_StringFormat_E1; } else { - nDecPlaces = std::max< sal_Int32 >( 0, nDecPlaces - nExp - 1 ); + nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1); eFormat = rtl_math_StringFormat_F; } } @@ -371,17 +383,18 @@ inline void doubleToString(typename T::String ** pResult, sal_Int32 nDigits = nDecPlaces + 1; - if( eFormat == rtl_math_StringFormat_F ) + if (eFormat == rtl_math_StringFormat_F) nDigits += nExp; // Round the number - if( nDigits >= 0 ) + if(nDigits >= 0) { - if( ( fValue += nRoundVal[ nDigits > 15 ? 15 : nDigits ] ) >= 10 ) + if ((fValue += nRoundVal[nDigits > 15 ? 15 : nDigits] ) >= 10) { fValue = 1.0; nExp++; - if( eFormat == rtl_math_StringFormat_F ) + + if (eFormat == rtl_math_StringFormat_F) nDigits++; } } @@ -390,16 +403,20 @@ inline void doubleToString(typename T::String ** pResult, typename T::Char aBuf[nBufMax]; typename T::Char * pBuf; sal_Int32 nBuf = static_cast< sal_Int32 > - ( nDigits <= 0 ? std::max< sal_Int32 >( nDecPlaces, abs(nExp) ) + (nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp)) : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0); - if ( nBuf > nBufMax ) + + if (nBuf > nBufMax) { pBuf = static_cast< typename T::Char * >( rtl_allocateMemory(nBuf * sizeof (typename T::Char))); - OSL_ENSURE(pBuf != nullptr, "Out of memory"); + OSL_ENSURE(pBuf, "Out of memory"); } else + { pBuf = aBuf; + } + typename T::Char * p = pBuf; if ( bSign ) *p++ = static_cast< typename T::Char >('-'); @@ -408,64 +425,76 @@ inline void doubleToString(typename T::String ** pResult, int nDecPos; // Check for F format and number < 1 - if( eFormat == rtl_math_StringFormat_F ) + if(eFormat == rtl_math_StringFormat_F) { - if( nExp < 0 ) + if(nExp < 0) { *p++ = static_cast< typename T::Char >('0'); - if ( nDecPlaces > 0 ) + if (nDecPlaces > 0) { *p++ = cDecSeparator; bHasDec = true; } - sal_Int32 i = ( nDigits <= 0 ? nDecPlaces : -nExp - 1 ); - while( (i--) > 0 ) + + sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1); + + while((i--) > 0) + { *p++ = static_cast< typename T::Char >('0'); + } + nDecPos = 0; } else + { nDecPos = nExp + 1; + } } else + { nDecPos = 1; + } int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0; - if ( nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator ) + if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator) { - while ( nGrouping + pGroups[nGroupSelector] < nDecPos ) + while (nGrouping + pGroups[nGroupSelector] < nDecPos) { - nGrouping += pGroups[ nGroupSelector ]; - if ( pGroups[nGroupSelector+1] ) + nGrouping += pGroups[nGroupSelector]; + if (pGroups[nGroupSelector+1]) { - if ( nGrouping + pGroups[nGroupSelector+1] >= nDecPos ) + if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos) break; // while + ++nGroupSelector; } - else if ( !nGroupExceed ) + else if (!nGroupExceed) + { nGroupExceed = nGrouping; + } } } // print the number - if( nDigits > 0 ) + if (nDigits > 0) { - for ( int i = 0; ; i++ ) + for (int i = 0; ; i++) { - if( i < 15 ) + if (i < 15) { int nDigit; if (nDigits-1 == 0 && i > 0 && i < 14) - nDigit = static_cast< int >( floor( fValue - + nKorrVal[15-i] ) ); + nDigit = static_cast< int >(floor( fValue + nKorrVal[15-i])); else - nDigit = static_cast< int >( fValue + 1E-15 ); + nDigit = static_cast< int >(fValue + 1E-15); + if (nDigit >= 10) { // after-treatment of up-rounding to the next decade sal_Int32 sLen = static_cast< long >(p-pBuf)-1; if (sLen == -1) { p = pBuf; - if ( eFormat == rtl_math_StringFormat_F ) + if (eFormat == rtl_math_StringFormat_F) { *p++ = static_cast< typename T::Char >('1'); *p++ = static_cast< typename T::Char >('0'); @@ -486,38 +515,37 @@ inline void doubleToString(typename T::String ** pResult, typename T::Char cS = pBuf[j]; if (cS != cDecSeparator) { - if ( cS != static_cast< typename T::Char >('9')) + if (cS != static_cast< typename T::Char >('9')) { pBuf[j] = ++cS; j = -1; // break loop } else { - pBuf[j] - = static_cast< typename T::Char >('0'); + pBuf[j] = static_cast< typename T::Char >('0'); if (j == 0) { - if ( eFormat == rtl_math_StringFormat_F) + if (eFormat == rtl_math_StringFormat_F) { // insert '1' typename T::Char * px = p++; - while ( pBuf < px ) + while (pBuf < px) { *px = *(px-1); px--; } - pBuf[0] = static_cast< - typename T::Char >('1'); + + pBuf[0] = static_cast< typename T::Char >('1'); } else { - pBuf[j] = static_cast< - typename T::Char >('1'); + pBuf[j] = static_cast< typename T::Char >('1'); nExp++; } } } } } + *p++ = static_cast< typename T::Char >('0'); } fValue = 0.0; @@ -526,88 +554,104 @@ inline void doubleToString(typename T::String ** pResult, { *p++ = static_cast< typename T::Char >( nDigit + static_cast< typename T::Char >('0') ); - fValue = ( fValue - nDigit ) * 10.0; + fValue = (fValue - nDigit) * 10.0; } } else + { *p++ = static_cast< typename T::Char >('0'); - if( !--nDigits ) + } + + if (!--nDigits) break; // for - if( nDecPos ) + + if (nDecPos) { - if( !--nDecPos ) + if(!--nDecPos) { *p++ = cDecSeparator; bHasDec = true; } - else if ( nDecPos == nGrouping ) + else if (nDecPos == nGrouping) { *p++ = cGroupSeparator; - nGrouping -= pGroups[ nGroupSelector ]; - if ( nGroupSelector && nGrouping < nGroupExceed ) + nGrouping -= pGroups[nGroupSelector]; + + if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } } } } - if ( !bHasDec && eFormat == rtl_math_StringFormat_F ) + if (!bHasDec && eFormat == rtl_math_StringFormat_F) { // nDecPlaces < 0 did round the value - while ( --nDecPos > 0 ) + while (--nDecPos > 0) { // fill before decimal point - if ( nDecPos == nGrouping ) + if (nDecPos == nGrouping) { *p++ = cGroupSeparator; - nGrouping -= pGroups[ nGroupSelector ]; - if ( nGroupSelector && nGrouping < nGroupExceed ) + nGrouping -= pGroups[nGroupSelector]; + + if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } + *p++ = static_cast< typename T::Char >('0'); } } - if ( bEraseTrailingDecZeros && bHasDec && p > pBuf ) + if (bEraseTrailingDecZeros && bHasDec && p > pBuf) { - while ( *(p-1) == static_cast< typename T::Char >('0') ) + while (*(p-1) == static_cast< typename T::Char >('0')) + { p--; - if ( *(p-1) == cDecSeparator ) + } + + if (*(p-1) == cDecSeparator) p--; } // Print the exponent ('E', followed by '+' or '-', followed by exactly // three digits for rtl_math_StringFormat_E). The code in // rtl_[u]str_valueOf{Float|Double} relies on this format. - if( eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1 ) + if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1) { - if ( p == pBuf ) + if (p == pBuf) *p++ = static_cast< typename T::Char >('1'); // maybe no nDigits if nDecPlaces < 0 + *p++ = static_cast< typename T::Char >('E'); - if( nExp < 0 ) + if(nExp < 0) { nExp = -nExp; *p++ = static_cast< typename T::Char >('-'); } else + { *p++ = static_cast< typename T::Char >('+'); - if ( eFormat == rtl_math_StringFormat_E || nExp >= 100 ) + } + + if (eFormat == rtl_math_StringFormat_E || nExp >= 100) *p++ = static_cast< typename T::Char >( nExp / 100 + static_cast< typename T::Char >('0') ); + nExp %= 100; - if ( eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10 ) + + if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10) *p++ = static_cast< typename T::Char >( nExp / 10 + static_cast< typename T::Char >('0') ); + *p++ = static_cast< typename T::Char >( nExp % 10 + static_cast< typename T::Char >('0') ); } - if (pResultCapacity == nullptr) + if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else - T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, - p - pBuf); + T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); - if ( pBuf != &aBuf[0] ) + if (pBuf != &aBuf[0]) rtl_freeMemory(pBuf); } @@ -670,7 +714,10 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT const * p0 = pBegin; while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t'))) + { ++p0; + } + bool bSign; if (p0 != pEnd && *p0 == CharT('-')) { @@ -683,11 +730,12 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, if (p0 != pEnd && *p0 == CharT('+')) ++p0; } + CharT const * p = p0; bool bDone = false; // #i112652# XMLSchema-2 - if (3 <= (pEnd - p)) + if ((pEnd - p) >= 3) { if ((CharT('N') == p[0]) && (CharT('a') == p[1]) && (CharT('N') == p[2])) @@ -710,7 +758,9 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, { // leading zeros and group separators may be safely ignored while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator)) + { ++p; + } CharT const * pFirstSignificant = p; long nValExp = 0; // carry along exponent of mantissa @@ -725,7 +775,9 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, ++nValExp; } else if (c != cGroupSeparator) + { break; + } } // fraction part of mantissa @@ -739,8 +791,10 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, --nFracExp; ++p; } - if ( nValExp == 0 ) + + if (nValExp == 0) nValExp = nFracExp - 1; // no integer part => fraction exponent + // one decimal digit needs ld(10) ~= 3.32 bits static const int nSigs = (DBL_MANT_DIG / 3) + 1; int nDigs = 0; @@ -748,7 +802,9 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, { CharT c = *p; if (!rtl::isAsciiDigit(c)) + { break; + } if ( nDigs < nSigs ) { // further digits (more than nSigs) don't have any // significance @@ -757,25 +813,30 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, ++nDigs; } } - if ( fFrac != 0.0 ) + + if (fFrac != 0.0) + { fVal += rtl::math::pow10Exp( fFrac, nFracExp ); - else if ( nValExp < 0 ) + } + else if (nValExp < 0) { if (pFirstSignificant + 1 == p) { // No digit at all, only separator(s) without integer or // fraction part. Bail out. No number. No error. - if (pStatus != nullptr) + if (pStatus) *pStatus = eStatus; - if (pParsedEnd != nullptr) + + if (pParsedEnd) *pParsedEnd = pBegin; + return fVal; } nValExp = 0; // no digit other than 0 after decimal point } } - if ( nValExp > 0 ) + if (nValExp > 0) --nValExp; // started with offset +1 at the first mantissa digit // Exponent @@ -800,7 +861,10 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, { // no matter what follows, zero stays zero, but carry on the // offset while (p != pEnd && rtl::isAsciiDigit(*p)) + { ++p; + } + if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan p = pExponent; @@ -815,16 +879,20 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT c = *p; if (!rtl::isAsciiDigit(c)) break; + int i = c - CharT('0'); + if ( long10Overflow( nExp, i ) ) bOverflow = true; else nExp = nExp * 10 + i; } + if ( nExp ) { if ( bExpSign ) nExp = -nExp; + long nAllExp = ( bOverflow ? 0 : nExp + nValExp ); if ( nAllExp > DBL_MAX_10_EXP || (bOverflow && !bExpSign) ) { // overflow @@ -843,7 +911,9 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, fVal = rtl::math::pow10Exp( fVal, nAllExp ); } else + { fVal = rtl::math::pow10Exp( fVal, nExp ); // normal + } } else if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan @@ -877,14 +947,18 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, double sd; sal_math_Double md; } m; + m.sd = fVal; m.md.w32_parts.msw |= 0x80000000; // create negative NaN fVal = m.sd; bSign = false; // don't negate again } + // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) + { ++p; + } } } } @@ -892,15 +966,16 @@ inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, // overflow also if more than DBL_MAX_10_EXP digits without decimal // separator, or 0. and more than DBL_MIN_10_EXP digits, ... bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way... - if ( bHuge ) + if (bHuge) eStatus = rtl_math_ConversionStatus_OutOfRange; - if ( bSign ) + if (bSign) fVal = -fVal; - if (pStatus != nullptr) + if (pStatus) *pStatus = eStatus; - if (pParsedEnd != nullptr) + + if (pParsedEnd) *pParsedEnd = p == p0 ? pBegin : p; return fVal; @@ -942,26 +1017,25 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, { OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20); - if ( fValue == 0.0 ) + if (fValue == 0.0) return fValue; // sign adjustment bool bSign = rtl::math::isSignBitSet( fValue ); - if ( bSign ) + if (bSign) fValue = -fValue; double fFac = 0; - if ( nDecPlaces != 0 ) + if (nDecPlaces != 0) { // max 20 decimals, we don't have unlimited precision // #38810# and no overflow on fValue*=fFac - if ( nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20) ) + if (nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20)) return bSign ? -fValue : fValue; - fFac = getN10Exp( nDecPlaces ); + fFac = getN10Exp(nDecPlaces); fValue *= fFac; } - //else //! uninitialized fFac, not needed switch ( eMode ) { @@ -972,41 +1046,44 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, nExp = static_cast<int>( floor( log10( fValue ) ) ); else nExp = 0; + int nIndex = 15 - nExp; + if ( nIndex > 15 ) nIndex = 15; else if ( nIndex <= 1 ) nIndex = 0; - fValue = floor( fValue + 0.5 + nKorrVal[nIndex] ); + + fValue = floor(fValue + 0.5 + nKorrVal[nIndex]); } break; - case rtl_math_RoundingMode_Down : - fValue = rtl::math::approxFloor( fValue ); + case rtl_math_RoundingMode_Down: + fValue = rtl::math::approxFloor(fValue); break; - case rtl_math_RoundingMode_Up : - fValue = rtl::math::approxCeil( fValue ); + case rtl_math_RoundingMode_Up: + fValue = rtl::math::approxCeil(fValue); break; - case rtl_math_RoundingMode_Floor : - fValue = bSign ? rtl::math::approxCeil( fValue ) + case rtl_math_RoundingMode_Floor: + fValue = bSign ? rtl::math::approxCeil(fValue) : rtl::math::approxFloor( fValue ); break; - case rtl_math_RoundingMode_Ceiling : - fValue = bSign ? rtl::math::approxFloor( fValue ) - : rtl::math::approxCeil( fValue ); + case rtl_math_RoundingMode_Ceiling: + fValue = bSign ? rtl::math::approxFloor(fValue) + : rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_HalfDown : { - double f = floor( fValue ); - fValue = ((fValue - f) <= 0.5) ? f : ceil( fValue ); + double f = floor(fValue); + fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue); } break; - case rtl_math_RoundingMode_HalfUp : + case rtl_math_RoundingMode_HalfUp: { - double f = floor( fValue ); - fValue = ((fValue - f) < 0.5) ? f : ceil( fValue ); + double f = floor(fValue); + fValue = ((fValue - f) < 0.5) ? f : ceil(fValue); } break; - case rtl_math_RoundingMode_HalfEven : + case rtl_math_RoundingMode_HalfEven: #if defined FLT_ROUNDS /* Use fast version. FLT_ROUNDS may be defined to a function by some compilers! @@ -1021,7 +1098,7 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, volatile: prevent compiler from being too smart */ - if ( FLT_ROUNDS == 1 ) + if (FLT_ROUNDS == 1) { volatile double x = fValue + 1.0 / DBL_EPSILON; fValue = x - 1.0 / DBL_EPSILON; @@ -1029,9 +1106,11 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, else #endif // FLT_ROUNDS { - double f = floor( fValue ); - if ( (fValue - f) != 0.5 ) + double f = floor(fValue); + if ((fValue - f) != 0.5) + { fValue = floor( fValue + 0.5 ); + } else { double g = f / 2.0; @@ -1044,7 +1123,7 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, break; } - if ( nDecPlaces != 0 ) + if (nDecPlaces != 0) fValue /= fFac; return bSign ? -fValue : fValue; @@ -1052,35 +1131,39 @@ double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C() { - return fValue * getN10Exp( nExp ); + return fValue * getN10Exp(nExp); } double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C() { if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue)) + { // We don't handle these conditions. Bail out. return fValue; + } double fOrigValue = fValue; - bool bSign = ::rtl::math::isSignBitSet( fValue); + bool bSign = ::rtl::math::isSignBitSet(fValue); if (bSign) fValue = -fValue; - int nExp = static_cast<int>( floor( log10( fValue))); + int nExp = static_cast< int >(floor(log10(fValue))); nExp = 14 - nExp; - double fExpValue = getN10Exp( nExp); + double fExpValue = getN10Exp(nExp); fValue *= fExpValue; // If the original value was near DBL_MIN we got an overflow. Restore and // bail out. - if (!rtl::math::isFinite( fValue)) + if (!rtl::math::isFinite(fValue)) return fOrigValue; - fValue = rtl_math_round( fValue, 0, rtl_math_RoundingMode_Corrected); + + fValue = rtl_math_round(fValue, 0, rtl_math_RoundingMode_Corrected); fValue /= fExpValue; + // If the original value was near DBL_MAX we got an overflow. Restore and // bail out. - if (!rtl::math::isFinite( fValue)) + if (!rtl::math::isFinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; @@ -1090,47 +1173,54 @@ bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C() { static const double e48 = 1.0 / (16777216.0 * 16777216.0); static const double e44 = e48 * 16.0; + if (a == b) return true; + if (a == 0.0 || b == 0.0) return false; + const double d = fabs(a - b); if (!rtl::math::isFinite(d)) return false; // Nan or Inf involved + if (d > ((a = fabs(a)) * e44) || d > ((b = fabs(b)) * e44)) return false; + if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b)) return false; // special case for representable integers. + return (d < a * e48 && d < b * e48); } -double SAL_CALL rtl_math_expm1( double fValue ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C() { return expm1(fValue); } -double SAL_CALL rtl_math_log1p( double fValue ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C() { #ifdef __APPLE__ if (fValue == -0.0) return fValue; // OS X 10.8 libc returns 0.0 for -0.0 #endif + return log1p(fValue); } -double SAL_CALL rtl_math_atanh( double fValue ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C() { - return 0.5 * rtl_math_log1p( 2.0 * fValue / (1.0-fValue) ); + return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue)); } /** Parent error function (erf) */ -double SAL_CALL rtl_math_erf( double x ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C() { return erf(x); } /** Parent complementary error function (erfc) */ -double SAL_CALL rtl_math_erfc( double x ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C() { return erfc(x); } @@ -1138,7 +1228,7 @@ double SAL_CALL rtl_math_erfc( double x ) SAL_THROW_EXTERN_C() /** improved accuracy of asinh for |x| large and for x near zero @see #i97605# */ -double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C() { if ( fX == 0.0 ) return 0.0; @@ -1149,8 +1239,10 @@ double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C() fX = - fX; fSign = -1.0; } + if ( fX < 0.125 ) return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX))); + if ( fX < 1.25e7 ) return fSign * log( fX + sqrt( 1.0 + fX*fX)); @@ -1160,10 +1252,10 @@ double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C() /** improved accuracy of acosh for x large and for x near 1 @see #i97605# */ -double SAL_CALL rtl_math_acosh( double fX ) SAL_THROW_EXTERN_C() +double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C() { volatile double fZ = fX - 1.0; - if ( fX < 1.0 ) + if (fX < 1.0) { double fResult; ::rtl::math::setNan( &fResult ); @@ -1171,10 +1263,13 @@ double SAL_CALL rtl_math_acosh( double fX ) SAL_THROW_EXTERN_C() } if ( fX == 1.0 ) return 0.0; + if ( fX < 1.1 ) return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ)); + if ( fX < 1.25e7 ) return log( fX + sqrt( fX*fX - 1.0)); + return log( 2.0*fX); } |