summaryrefslogtreecommitdiff
path: root/scaddins/source
diff options
context:
space:
mode:
authorVladimir Glazounov <vg@openoffice.org>2003-06-04 09:32:04 +0000
committerVladimir Glazounov <vg@openoffice.org>2003-06-04 09:32:04 +0000
commitf9b9fa6f28c03021da075e194a69f3b4d3d636af (patch)
tree6a200fa3b21e08eb6be20a2f3def58c4507cf790 /scaddins/source
parent57a198415608a84016087932f4f5b5f68075244a (diff)
INTEGRATION: CWS dr4 (1.1.2); FILE ADDED
2003/06/02 10:18:19 dr 1.1.2.1: #i9134# fixed BESSEL J and I calculation
Diffstat (limited to 'scaddins/source')
-rw-r--r--scaddins/source/analysis/bessel.cxx453
1 files changed, 453 insertions, 0 deletions
diff --git a/scaddins/source/analysis/bessel.cxx b/scaddins/source/analysis/bessel.cxx
new file mode 100644
index 000000000000..da6e5bb7dc42
--- /dev/null
+++ b/scaddins/source/analysis/bessel.cxx
@@ -0,0 +1,453 @@
+/*************************************************************************
+ *
+ * $RCSfile: bessel.cxx,v $
+ *
+ * $Revision: 1.2 $
+ *
+ * last change: $Author: vg $ $Date: 2003-06-04 10:32:04 $
+ *
+ * The Contents of this file are made available subject to the terms of
+ * either of the following licenses
+ *
+ * - GNU Lesser General Public License Version 2.1
+ * - Sun Industry Standards Source License Version 1.1
+ *
+ * Sun Microsystems Inc., October, 2000
+ *
+ * GNU Lesser General Public License Version 2.1
+ * =============================================
+ * Copyright 2000 by Sun Microsystems, Inc.
+ * 901 San Antonio Road, Palo Alto, CA 94303, USA
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License version 2.1, as published by the Free Software Foundation.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ *
+ * Sun Industry Standards Source License Version 1.1
+ * =================================================
+ * The contents of this file are subject to the Sun Industry Standards
+ * Source License Version 1.1 (the "License"); You may not use this file
+ * except in compliance with the License. You may obtain a copy of the
+ * License at http://www.openoffice.org/license.html.
+ *
+ * Software provided under this License is provided on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
+ * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
+ * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
+ * See the License for the specific provisions governing your rights and
+ * obligations concerning the Software.
+ *
+ * The Initial Developer of the Original Code is: Sun Microsystems, Inc.
+ *
+ * Copyright: 2000 by Sun Microsystems, Inc.
+ *
+ * All Rights Reserved.
+ *
+ * Contributor(s): _______________________________________
+ *
+ *
+ ************************************************************************/
+
+#ifndef SCA_BESSEL_HXX
+#include "bessel.hxx"
+#endif
+#ifndef ANALYSISHELPER_HXX
+#include "analysishelper.hxx"
+#endif
+
+#include <rtl/math.hxx>
+
+using ::com::sun::star::lang::IllegalArgumentException;
+
+namespace sca {
+namespace analysis {
+
+// ============================================================================
+
+const double f_PI = 3.1415926535897932385;
+const double f_2_PI = 2.0 * f_PI;
+const double f_PI_DIV_2 = f_PI / 2.0;
+const double f_PI_DIV_4 = f_PI / 4.0;
+const double f_2_DIV_PI = 2.0 / f_PI;
+
+const double THRESHOLD = 30.0; // Threshold for usage of approximation formula.
+const double MAXEPSILON = 1e-10; // Maximum epsilon for end of iteration.
+const sal_Int32 MAXITER = 100; // Maximum number of iterations.
+
+
+// ============================================================================
+// BESSEL J
+// ============================================================================
+
+/* The BESSEL function, first kind, unmodified:
+
+ inf (-1)^k (x/2)^(n+2k)
+ J_n(x) = SUM TERM(n,k) with TERM(n,k) := ---------------------
+ k=0 k! (n+k)!
+
+ Approximation for the BESSEL function, first kind, unmodified, for great x:
+
+ J_n(x) ~ sqrt( 2 / (PI x) ) cos( x - n PI/2 - PI/4 ) for x>=0.
+ */
+
+// ----------------------------------------------------------------------------
+
+double BesselJ( double x, sal_Int32 n ) throw( IllegalArgumentException )
+{
+ if( n < 0 )
+ throw IllegalArgumentException();
+
+ double fResult = 0.0;
+ if( fabs( x ) <= THRESHOLD )
+ {
+ /* Start the iteration without TERM(n,0), which is set here.
+
+ TERM(n,0) = (x/2)^n / n!
+ */
+ double fTerm = pow( x / 2.0, n ) / Fak( n );
+ sal_Int32 nK = 1; // Start the iteration with k=1.
+ fResult = fTerm; // Start result with TERM(n,0).
+
+ const double fSqrX = x * x / -4.0;
+
+ do
+ {
+ /* Calculation of TERM(n,k) from TERM(n,k-1):
+
+ (-1)^k (x/2)^(n+2k)
+ TERM(n,k) = ---------------------
+ k! (n+k)!
+
+ (-1)(-1)^(k-1) (x/2)^2 (x/2)^(n+2(k-1))
+ = -----------------------------------------
+ k (k-1)! (n+k) (n+k-1)!
+
+ -(x/2)^2 (-1)^(k-1) (x/2)^(n+2(k-1))
+ = ---------- * -----------------------------
+ k(n+k) (k-1)! (n+k-1)!
+
+ -(x^2/4)
+ = ---------- TERM(n,k-1)
+ k(n+k)
+ */
+ fTerm *= fSqrX; // defined above as -(x^2/4)
+ fTerm /= (nK * (nK + n));
+ fResult += fTerm;
+ }
+ while( (fabs( fTerm ) > MAXEPSILON) && (++nK < MAXITER) );
+ }
+ else
+ {
+ /* Approximation for the BESSEL function, first kind, unmodified:
+
+ J_n(x) ~ sqrt( 2 / (PI x) ) cos( x - n PI/2 - PI/4 ) for x>=0.
+
+ The BESSEL function J_n with n IN {0,2,4,...} is axially symmetric at
+ x=0, means J_n(x) = J_n(-x). Therefore the approximation for x<0 is:
+
+ J_n(x) = J_n(|x|) for x<0 and n IN {0,2,4,...}.
+
+ The BESSEL function J_n with n IN {1,3,5,...} is point-symmetric at
+ x=0, means J_n(x) = -J_n(-x). Therefore the approximation for x<0 is:
+
+ J_n(x) = -J_n(|x|) for x<0 and n IN {1,3,5,...}.
+ */
+ double fXAbs = fabs( x );
+ fResult = sqrt( f_2_DIV_PI / fXAbs ) * cos( fXAbs - n * f_PI_DIV_2 - f_PI_DIV_4 );
+ if( (n & 1) && (x < 0.0) )
+ fResult = -fResult;
+ }
+ return fResult;
+}
+
+
+// ============================================================================
+// BESSEL I
+// ============================================================================
+
+/* The BESSEL function, first kind, modified:
+
+ inf (x/2)^(n+2k)
+ I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
+ k=0 k! (n+k)!
+
+ Approximation for the BESSEL function, first kind, modified, for great x:
+
+ I_n(x) ~ e^x / sqrt( 2 PI x ) for x>=0.
+ */
+
+// ----------------------------------------------------------------------------
+
+double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException )
+{
+ if( n < 0 )
+ throw IllegalArgumentException();
+
+ double fResult = 0.0;
+ if( fabs( x ) <= THRESHOLD )
+ {
+ /* Start the iteration without TERM(n,0), which is set here.
+
+ TERM(n,0) = (x/2)^n / n!
+ */
+ double fTerm = pow( x / 2.0, n ) / Fak( n );
+ sal_Int32 nK = 1; // Start the iteration with k=1.
+ fResult = fTerm; // Start result with TERM(n,0).
+
+ const double fSqrX = x * x / 4.0;
+
+ do
+ {
+ /* Calculation of TERM(n,k) from TERM(n,k-1):
+
+ (x/2)^(n+2k)
+ TERM(n,k) = --------------
+ k! (n+k)!
+
+ (x/2)^2 (x/2)^(n+2(k-1))
+ = --------------------------
+ k (k-1)! (n+k) (n+k-1)!
+
+ (x/2)^2 (x/2)^(n+2(k-1))
+ = --------- * ------------------
+ k(n+k) (k-1)! (n+k-1)!
+
+ x^2/4
+ = -------- TERM(n,k-1)
+ k(n+k)
+ */
+ fTerm *= fSqrX; // defined above as x^2/4
+ fTerm /= (nK * (nK + n));
+ fResult += fTerm;
+ }
+ while( (fabs( fTerm ) > MAXEPSILON) && (++nK < MAXITER) );
+ }
+ else
+ {
+ /* Approximation for the BESSEL function, first kind, modified:
+
+ I_n(x) ~ e^x / sqrt( 2 PI x ) for x>=0.
+
+ The BESSEL function I_n with n IN {0,2,4,...} is axially symmetric at
+ x=0, means I_n(x) = I_n(-x). Therefore the approximation for x<0 is:
+
+ I_n(x) = I_n(|x|) for x<0 and n IN {0,2,4,...}.
+
+ The BESSEL function I_n with n IN {1,3,5,...} is point-symmetric at
+ x=0, means I_n(x) = -I_n(-x). Therefore the approximation for x<0 is:
+
+ I_n(x) = -I_n(|x|) for x<0 and n IN {1,3,5,...}.
+ */
+ double fXAbs = fabs( x );
+ fResult = exp( fXAbs ) / sqrt( f_2_PI * fXAbs );
+ if( (n & 1) && (x < 0.0) )
+ fResult = -fResult;
+ }
+ return fResult;
+}
+
+
+// ============================================================================
+
+double Besselk0( double fNum ) throw( IllegalArgumentException )
+{
+ double fRet;
+
+ if( fNum <= 2.0 )
+ {
+ double fNum2 = fNum * 0.5;
+ double y = fNum2 * fNum2;
+
+ fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
+ ( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
+ y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
+ }
+ else
+ {
+ double y = 2.0 / fNum;
+
+ fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
+ y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
+ y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
+ }
+
+ return fRet;
+}
+
+
+double Besselk1( double fNum ) throw( IllegalArgumentException )
+{
+ double fRet;
+
+ if( fNum <= 2.0 )
+ {
+ double fNum2 = fNum * 0.5;
+ double y = fNum2 * fNum2;
+
+ fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
+ ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
+ y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
+ / fNum;
+ }
+ else
+ {
+ double y = 2.0 / fNum;
+
+ fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
+ y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
+ y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
+ }
+
+ return fRet;
+}
+
+
+double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException )
+{
+ switch( nOrder )
+ {
+ case 0: return Besselk0( fNum ); break;
+ case 1: return Besselk1( fNum ); break;
+ default:
+ {
+ double fBkp;
+
+ double fTox = 2.0 / fNum;
+ double fBkm = Besselk0( fNum );
+ double fBk = Besselk1( fNum );
+
+ for( sal_Int32 n = 1 ; n < nOrder ; n++ )
+ {
+ fBkp = fBkm + double( n ) * fTox * fBk;
+ fBkm = fBk;
+ fBk = fBkp;
+ }
+
+ return fBk;
+ }
+ }
+}
+
+
+double Bessely0( double fNum ) throw( IllegalArgumentException )
+{
+ double fRet;
+
+ if( fNum < 8.0 )
+ {
+ double y = fNum * fNum;
+
+ double f1 = -2957821389.0 + y * ( 7062834065.0 + y * ( -512359803.6 +
+ y * ( 10879881.29 + y * ( -86327.92757 + y * 228.4622733 ) ) ) );
+
+ double f2 = 40076544269.0 + y * ( 745249964.8 + y * ( 7189466.438 +
+ y * ( 47447.26470 + y * ( 226.1030244 + y ) ) ) );
+
+ fRet = f1 / f2 + 0.636619772 * BesselJ( fNum, 0 ) * log( fNum );
+ }
+ else
+ {
+ double z = 8.0 / fNum;
+ double y = z * z;
+ double xx = fNum - 0.785398164;
+
+ double f1 = 1.0 + y * ( -0.1098628627e-2 + y * ( 0.2734510407e-4 +
+ y * ( -0.2073370639e-5 + y * 0.2093887211e-6 ) ) );
+
+ double f2 = -0.1562499995e-1 + y * ( 0.1430488765e-3 +
+ y * ( -0.6911147651e-5 + y * ( 0.7621095161e-6 +
+ y * ( -0.934945152e-7 ) ) ) );
+
+ fRet = sqrt( 0.636619772 / fNum ) * ( sin( xx ) * f1 + z * cos( xx ) * f2 );
+ }
+
+ return fRet;
+}
+
+
+double Bessely1( double fNum ) throw( IllegalArgumentException )
+{
+ double fRet;
+
+ if( fNum < 8.0 )
+ {
+ double y = fNum * fNum;
+
+ double f1 = fNum * ( -0.4900604943e13 + y * ( 0.1275274390e13 +
+ y * ( -0.5153438139e11 + y * ( 0.7349264551e9 +
+ y * ( -0.4237922726e7 + y * 0.8511937935e4 ) ) ) ) );
+
+ double f2 = 0.2499580570e14 + y * ( 0.4244419664e12 +
+ y * ( 0.3733650367e10 + y * ( 0.2245904002e8 +
+ y * ( 0.1020426050e6 + y * ( 0.3549632885e3 + y ) ) ) ) );
+
+ fRet = f1 / f2 + 0.636619772 * ( BesselJ( fNum, 1 ) * log( fNum ) - 1.0 / fNum );
+ }
+ else
+ {
+#if 0
+ // #i12430# don't know the intention of this piece of code...
+ double z = 8.0 / fNum;
+ double y = z * z;
+ double xx = fNum - 2.356194491;
+
+ double f1 = 1.0 + y * ( 0.183105e-2 + y * ( -0.3516396496e-4 +
+ y * ( 0.2457520174e-5 + y * ( -0.240337019e6 ) ) ) );
+
+ double f2 = 0.04687499995 + y * ( -0.2002690873e-3 +
+ y * ( 0.8449199096e-5 + y * ( -0.88228987e-6 +
+ y * 0.105787412e-6 ) ) );
+
+ fRet = sqrt( 0.636619772 / fNum ) * ( sin( xx ) * f1 + z * cos( xx ) * f2 );
+#endif
+ // #i12430# ...but this seems to work much better.
+ fRet = sqrt( 0.636619772 / fNum ) * sin( fNum - 2.356194491 );
+ }
+
+ return fRet;
+}
+
+
+double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException )
+{
+ switch( nOrder )
+ {
+ case 0: return Bessely0( fNum ); break;
+ case 1: return Bessely1( fNum ); break;
+ default:
+ {
+ double fByp;
+
+ double fTox = 2.0 / fNum;
+ double fBym = Bessely0( fNum );
+ double fBy = Bessely1( fNum );
+
+ for( sal_Int32 n = 1 ; n < nOrder ; n++ )
+ {
+ fByp = double( n ) * fTox * fBy - fBym;
+ fBym = fBy;
+ fBy = fByp;
+ }
+
+ return fBy;
+ }
+ }
+}
+
+
+// ============================================================================
+
+} // namespace analysis
+} // namespace sca
+