summaryrefslogtreecommitdiff
path: root/tools/source
diff options
context:
space:
mode:
authorJan Holesovsky <kendy@collabora.com>2014-10-23 17:41:47 +0200
committerJan Holesovsky <kendy@collabora.com>2014-10-23 18:34:39 +0200
commit31af61ea091cc895b893c849f2130aa35792b7db (patch)
tree6c7b63c5b538034bd5d356c5a8667b7e95d59b9c /tools/source
parente92c0d6f9b7a6251e00dc55219a203a7e53c96e2 (diff)
Fraction: Revert "fdo#81356: convert Fraction to boost::rational<long> - wip"
This reverts commit 47a2d7642d249d70b5da0c330a73f3a0032e4bba. Conflicts: cui/source/tabpages/transfrm.cxx svx/source/svdraw/svdedtv1.cxx svx/source/svdraw/svdibrow.cxx sw/source/filter/ww1/w1filter.cxx tools/source/generic/rational.cxx Change-Id: I4849916f5f277a4afef0e279b0135c76b36b9d15
Diffstat (limited to 'tools/source')
-rw-r--r--tools/source/generic/fract.cxx504
-rw-r--r--tools/source/generic/rational.cxx173
2 files changed, 504 insertions, 173 deletions
diff --git a/tools/source/generic/fract.cxx b/tools/source/generic/fract.cxx
new file mode 100644
index 000000000000..198a42aa2639
--- /dev/null
+++ b/tools/source/generic/fract.cxx
@@ -0,0 +1,504 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <algorithm>
+
+#include <limits.h>
+#include <rtl/ustring.hxx>
+#include <tools/debug.hxx>
+#include <tools/fract.hxx>
+#include <tools/lineend.hxx>
+#include <tools/stream.hxx>
+#include <tools/bigint.hxx>
+
+/** Compute greates common divisor using Euclidian algorithm
+
+ As the algorithm works on positive values only, the absolute value
+ of each parameter is used.
+
+ @param nVal1
+ @param nVal2
+
+ @note: If one parameter is {0,1}, GetGGT returns 1.
+*/
+static long GetGGT( long nVal1, long nVal2 )
+{
+ nVal1 = std::abs( nVal1 );
+ nVal2 = std::abs( nVal2 );
+
+ if ( nVal1 <= 1 || nVal2 <= 1 )
+ return 1;
+
+ while ( nVal1 != nVal2 )
+ {
+ if ( nVal1 > nVal2 )
+ {
+ nVal1 %= nVal2;
+ if ( nVal1 == 0 )
+ return nVal2;
+ }
+ else
+ {
+ nVal2 %= nVal1;
+ if ( nVal2 == 0 )
+ return nVal1;
+ }
+ }
+ return nVal1;
+}
+
+static void Reduce( BigInt &rVal1, BigInt &rVal2 )
+{
+ BigInt nA( rVal1 );
+ BigInt nB( rVal2 );
+ nA.Abs();
+ nB.Abs();
+
+ if ( nA.IsOne() || nB.IsOne() || nA.IsZero() || nB.IsZero() )
+ return;
+
+ while ( nA != nB )
+ {
+ if ( nA > nB )
+ {
+ nA %= nB;
+ if ( nA.IsZero() )
+ {
+ rVal1 /= nB;
+ rVal2 /= nB;
+ return;
+ }
+ }
+ else
+ {
+ nB %= nA;
+ if ( nB.IsZero() )
+ {
+ rVal1 /= nA;
+ rVal2 /= nA;
+ return;
+ }
+ }
+ }
+
+ rVal1 /= nA;
+ rVal2 /= nB;
+}
+
+// Initialized by setting nNum as nominator and nDen as denominator
+// Negative values in the denominator are invalid and cause the
+// inversion of both nominator and denominator signs
+// in order to return the correct value.
+Fraction::Fraction( long nNum, long nDen )
+{
+ nNumerator = nNum;
+ nDenominator = nDen;
+ if ( nDenominator < 0 )
+ {
+ nDenominator = -nDenominator;
+ nNumerator = -nNumerator;
+ }
+
+ // Reduce through GCD
+ long n = GetGGT( nNumerator, nDenominator );
+ nNumerator /= n;
+ nDenominator /= n;
+}
+
+// If dVal > LONG_MAX, the fraction is set as invalid.
+// Otherwise, dVal and denominator are multiplied with 10, until one of them
+// is larger than (LONG_MAX / 10) and the fraction is reduced with GCD
+Fraction::Fraction( double dVal )
+{
+ long nDen = 1;
+ long nMAX = LONG_MAX / 10;
+
+ if ( dVal > LONG_MAX || dVal < LONG_MIN )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ return;
+ }
+
+ while ( std::abs( (long)dVal ) < nMAX && nDen < nMAX )
+ {
+ dVal *= 10;
+ nDen *= 10;
+ }
+ nNumerator = (long)dVal;
+ nDenominator = nDen;
+
+ // Reduce through GCD
+ long n = GetGGT( nNumerator, nDenominator );
+ nNumerator /= n;
+ nDenominator /= n;
+}
+
+Fraction::operator double() const
+{
+ if ( nDenominator > 0 )
+ return (double)nNumerator / (double)nDenominator;
+ else
+ return (double)0;
+}
+
+// This methods first validates both values.
+// If one of the arguments is invalid, the whole operation is invalid.
+// For addition both fractions are extended to match the denominator,
+// then nominators are added and reduced (through GCD).
+// Internal datatype for computation is SLong to detect overflows,
+// which cause the operation to be marked as invalid
+Fraction& Fraction::operator += ( const Fraction& rVal )
+{
+ if ( !rVal.IsValid() )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ if ( !IsValid() )
+ return *this;
+
+ // (a/b) + (c/d) = ( (a*d) + (c*b) ) / (b*d)
+ BigInt nN( nNumerator );
+ nN *= BigInt( rVal.nDenominator );
+ BigInt nW1Temp( nDenominator );
+ nW1Temp *= BigInt( rVal.nNumerator );
+ nN += nW1Temp;
+
+ BigInt nD( nDenominator );
+ nD *= BigInt( rVal.nDenominator );
+
+ Reduce( nN, nD );
+
+ if ( nN.bIsBig || nD.bIsBig )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ else
+ {
+ nNumerator = (long)nN,
+ nDenominator = (long)nD;
+ }
+
+ return *this;
+}
+
+// This methods first validates both values.
+// If one of the arguments is invalid, the whole operation is invalid.
+// For substraction, both fractions are extended to match the denominator,
+// then nominators are substracted and reduced (through GCD).
+// Internal datatype for computation is SLong to detect overflows,
+// which cause the operation to be marked as invalid
+Fraction& Fraction::operator -= ( const Fraction& rVal )
+{
+ if ( !rVal.IsValid() )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ if ( !IsValid() )
+ return *this;
+
+ // (a/b) - (c/d) = ( (a*d) - (c*b) ) / (b*d)
+ BigInt nN( nNumerator );
+ nN *= BigInt( rVal.nDenominator );
+ BigInt nW1Temp( nDenominator );
+ nW1Temp *= BigInt( rVal.nNumerator );
+ nN -= nW1Temp;
+
+ BigInt nD( nDenominator );
+ nD *= BigInt( rVal.nDenominator );
+
+ Reduce( nN, nD );
+
+ if ( nN.bIsBig || nD.bIsBig )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ else
+ {
+ nNumerator = (long)nN,
+ nDenominator = (long)nD;
+ }
+
+ return *this;
+}
+
+// This methods first validates both values.
+// If one of the arguments is invalid, the whole operation is invalid.
+// For mutliplication, nominator and denominators are first reduced
+// (through GCD), and then multiplied.
+// Internal datatype for computation is BigInt to detect overflows,
+// which cause the operation to be marked as invalid
+Fraction& Fraction::operator *= ( const Fraction& rVal )
+{
+ if ( !rVal.IsValid() )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ if ( !IsValid() )
+ return *this;
+
+ long nGGT1 = GetGGT( nNumerator, rVal.nDenominator );
+ long nGGT2 = GetGGT( rVal.nNumerator, nDenominator );
+ BigInt nN( nNumerator / nGGT1 );
+ nN *= BigInt( rVal.nNumerator / nGGT2 );
+ BigInt nD( nDenominator / nGGT2 );
+ nD *= BigInt( rVal.nDenominator / nGGT1 );
+
+ if ( nN.bIsBig || nD.bIsBig )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ else
+ {
+ nNumerator = (long)nN,
+ nDenominator = (long)nD;
+ }
+
+ return *this;
+}
+
+// This methods first validates both values.
+// If one of the arguments is invalid, the whole operation is invalid.
+// For dividing a/b, we multiply a with the inverse of b.
+// To avoid overflows, we first reduce both fractions with GCD.
+// Internal datatype for computation is BigInt to detect overflows,
+// which cause the operation to be marked as invalid
+Fraction& Fraction::operator /= ( const Fraction& rVal )
+{
+ if ( !rVal.IsValid() )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ if ( !IsValid() )
+ return *this;
+
+ long nGGT1 = GetGGT( nNumerator, rVal.nNumerator );
+ long nGGT2 = GetGGT( rVal.nDenominator, nDenominator );
+ BigInt nN( nNumerator / nGGT1 );
+ nN *= BigInt( rVal.nDenominator / nGGT2 );
+ BigInt nD( nDenominator / nGGT2 );
+ nD *= BigInt( rVal.nNumerator / nGGT1 );
+
+ if ( nN.bIsBig || nD.bIsBig )
+ {
+ nNumerator = 0;
+ nDenominator = -1;
+ }
+ else
+ {
+ nNumerator = (long)nN,
+ nDenominator = (long)nD;
+ if ( nDenominator < 0 )
+ {
+ nDenominator = -nDenominator;
+ nNumerator = -nNumerator;
+ }
+ }
+
+ return *this;
+}
+
+// Similar to clz_table that can be googled
+const char nbits_table[32] =
+{
+ 32, 1, 23, 2, 29, 24, 14, 3,
+ 30, 27, 25, 18, 20, 15, 10, 4,
+ 31, 22, 28, 13, 26, 17, 19, 9,
+ 21, 12, 16, 8, 11, 7, 6, 5
+};
+
+static int impl_NumberOfBits( unsigned long nNum )
+{
+ // http://en.wikipedia.org/wiki/De_Bruijn_sequence
+ // background paper: Using de Bruijn Sequences to Index a 1 in a
+ // Computer Word (1998) Charles E. Leiserson,
+ // Harald Prokop, Keith H. Randall
+ // (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
+ const sal_uInt32 nDeBruijn = 0x7DCD629;
+
+ if ( nNum == 0 )
+ return 0;
+
+ // Get it to form like 0000001111111111b
+ nNum |= ( nNum >> 1 );
+ nNum |= ( nNum >> 2 );
+ nNum |= ( nNum >> 4 );
+ nNum |= ( nNum >> 8 );
+ nNum |= ( nNum >> 16 );
+
+ sal_uInt32 nNumber;
+ int nBonus = 0;
+
+#if SAL_TYPES_SIZEOFLONG == 4
+ nNumber = nNum;
+#elif SAL_TYPES_SIZEOFLONG == 8
+ nNum |= ( nNum >> 32 );
+
+ if ( nNum & 0x80000000 )
+ {
+ nNumber = sal_uInt32( nNum >> 32 );
+ nBonus = 32;
+
+ if ( nNumber == 0 )
+ return 32;
+ }
+ else
+ nNumber = sal_uInt32( nNum & 0xFFFFFFFF );
+#else
+#error "Unknown size of long!"
+#endif
+
+ // De facto shift left of nDeBruijn using multiplication (nNumber
+ // is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
+ // nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
+ // zero, sets the next bit to one, and thus effectively shift-left
+ // nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
+ // sequence in the msb for each distinct position of the last
+ // leading 0 bit - that's the property of a de Bruijn number.
+ nNumber = nDeBruijn + ( nDeBruijn * nNumber );
+
+ // 5-bit window indexes the result
+ return ( nbits_table[nNumber >> 27] ) + nBonus;
+}
+
+/** Inaccurate cancellation for a fraction.
+
+ Clip both nominator and denominator to said number of bits. If
+ either of those already have equal or less number of bits used,
+ this method does nothing.
+
+ @param nSignificantBits denotes, how many significant binary
+ digits to maintain, in both nominator and denominator.
+
+ @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
+ largest error occurs with the following pair of values:
+
+ binary 1000000011111111111111111111111b/1000000000000000000000000000000b
+ = 1082130431/1073741824
+ = approx. 1.007812499
+
+ A ReduceInaccurate(8) yields 1/1.
+*/
+void Fraction::ReduceInaccurate( unsigned nSignificantBits )
+{
+ if ( !nNumerator || !nDenominator )
+ return;
+
+ // Count with unsigned longs only
+ const bool bNeg = ( nNumerator < 0 );
+ unsigned long nMul = (unsigned long)( bNeg? -nNumerator: nNumerator );
+ unsigned long nDiv = (unsigned long)( nDenominator );
+
+ DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
+
+ // How much bits can we lose?
+ const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
+ const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
+
+ const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
+
+ // Remove the bits
+ nMul >>= nToLose;
+ nDiv >>= nToLose;
+
+ if ( !nMul || !nDiv )
+ {
+ // Return without reduction
+ OSL_FAIL( "Oops, we reduced too much..." );
+ return;
+ }
+
+ // Reduce
+ long n1 = GetGGT( nMul, nDiv );
+ if ( n1 != 1 )
+ {
+ nMul /= n1;
+ nDiv /= n1;
+ }
+
+ nNumerator = bNeg? -long( nMul ): long( nMul );
+ nDenominator = nDiv;
+}
+
+bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
+{
+ if ( !rVal1.IsValid() || !rVal2.IsValid() )
+ return false;
+
+ return rVal1.nNumerator == rVal2.nNumerator
+ && rVal1.nDenominator == rVal2.nDenominator;
+}
+
+// This methods first validates and reduces both values.
+// To compare (a/b) with (c/d), extend denominators (b*d), then return
+// the result of comparing the nominators (a < c)
+bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
+{
+ if ( !rVal1.IsValid() || !rVal2.IsValid() )
+ return false;
+
+ BigInt nN( rVal1.nNumerator );
+ nN *= BigInt( rVal2.nDenominator );
+ BigInt nD( rVal1.nDenominator );
+ nD *= BigInt( rVal2.nNumerator );
+
+ return nN < nD;
+}
+
+// This methods first validates and reduces both values.
+// To compare (a/b) with (c/d), extend denominators (b*d), then return
+// the result of comparing nominators (a > c)
+bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
+{
+ if ( !rVal1.IsValid() || !rVal2.IsValid() )
+ return false;
+
+ BigInt nN( rVal1.nNumerator );
+ nN *= BigInt( rVal2.nDenominator );
+ BigInt nD( rVal1.nDenominator);
+ nD *= BigInt( rVal2.nNumerator );
+
+ return nN > nD;
+}
+
+SvStream& ReadFraction( SvStream& rIStream, Fraction& rFract )
+{
+ sal_Int32 nTmp(0);
+ rIStream.ReadInt32( nTmp );
+ rFract.nNumerator = nTmp;
+ rIStream.ReadInt32( nTmp );
+ rFract.nDenominator = nTmp;
+ return rIStream;
+}
+
+SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
+{
+ rOStream.WriteInt32( rFract.nNumerator );
+ rOStream.WriteInt32( rFract.nDenominator );
+ return rOStream;
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
diff --git a/tools/source/generic/rational.cxx b/tools/source/generic/rational.cxx
deleted file mode 100644
index 6222265b87f3..000000000000
--- a/tools/source/generic/rational.cxx
+++ /dev/null
@@ -1,173 +0,0 @@
-/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
-/*
- * This file is part of the LibreOffice project.
- *
- * This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- *
- */
-
-#include <tools/debug.hxx>
-#include <tools/rational.hxx>
-#include <tools/stream.hxx>
-
-// If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
-// Otherwise, dVal and denominator are multiplied with 10, until one of them
-// is larger than (LONG_MAX / 10).
-boost::rational<long> rational_FromDouble(double dVal)
-{
- long nDen = 1;
- long nMAX = LONG_MAX / 10;
-
- if ( dVal > LONG_MAX || dVal < LONG_MIN )
- {
- throw boost::bad_rational();
- }
-
- while ( std::abs( (long)dVal ) < nMAX && nDen < nMAX )
- {
- dVal *= 10;
- nDen *= 10;
- }
- return boost::rational<long>((long) dVal, nDen);
-}
-
-// Similar to clz_table that can be googled
-const char nbits_table[32] =
-{
- 32, 1, 23, 2, 29, 24, 14, 3,
- 30, 27, 25, 18, 20, 15, 10, 4,
- 31, 22, 28, 13, 26, 17, 19, 9,
- 21, 12, 16, 8, 11, 7, 6, 5
-};
-
-static int impl_NumberOfBits( unsigned long nNum )
-{
- // http://en.wikipedia.org/wiki/De_Bruijn_sequence
- // background paper: Using de Bruijn Sequences to Index a 1 in a
- // Computer Word (1998) Charles E. Leiserson,
- // Harald Prokop, Keith H. Randall
- // (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
- const sal_uInt32 nDeBruijn = 0x7DCD629;
-
- if ( nNum == 0 )
- return 0;
-
- // Get it to form like 0000001111111111b
- nNum |= ( nNum >> 1 );
- nNum |= ( nNum >> 2 );
- nNum |= ( nNum >> 4 );
- nNum |= ( nNum >> 8 );
- nNum |= ( nNum >> 16 );
-
- sal_uInt32 nNumber;
- int nBonus = 0;
-
-#if SAL_TYPES_SIZEOFLONG == 4
- nNumber = nNum;
-#elif SAL_TYPES_SIZEOFLONG == 8
- nNum |= ( nNum >> 32 );
-
- if ( nNum & 0x80000000 )
- {
- nNumber = sal_uInt32( nNum >> 32 );
- nBonus = 32;
-
- if ( nNumber == 0 )
- return 32;
- }
- else
- nNumber = sal_uInt32( nNum & 0xFFFFFFFF );
-#else
-#error "Unknown size of long!"
-#endif
-
- // De facto shift left of nDeBruijn using multiplication (nNumber
- // is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
- // nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
- // zero, sets the next bit to one, and thus effectively shift-left
- // nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
- // sequence in the msb for each distinct position of the last
- // leading 0 bit - that's the property of a de Bruijn number.
- nNumber = nDeBruijn + ( nDeBruijn * nNumber );
-
- // 5-bit window indexes the result
- return ( nbits_table[nNumber >> 27] ) + nBonus;
-}
-
-/** Inaccurate cancellation for a fraction.
-
- Clip both nominator and denominator to said number of bits. If
- either of those already have equal or less number of bits used,
- this method does nothing.
-
- @param nSignificantBits denotes, how many significant binary
- digits to maintain, in both nominator and denominator.
-
- @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
- largest error occurs with the following pair of values:
-
- binary 1000000011111111111111111111111b/1000000000000000000000000000000b
- = 1082130431/1073741824
- = approx. 1.007812499
-
- A ReduceInaccurate(8) yields 1/1.
-*/
-void rational_ReduceInaccurate(boost::rational<long>& rRational, unsigned nSignificantBits)
-{
- if ( !rRational.numerator() || !rRational.denominator() )
- return;
-
- // Count with unsigned longs only
- // http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
- const bool bNeg = ( rRational.numerator() < 0 );
- unsigned long nMul = (unsigned long)( bNeg? -rRational.numerator(): rRational.numerator() );
- unsigned long nDiv = (unsigned long)( rRational.denominator() );
-
- DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
-
- // How much bits can we lose?
- const int nMulBitsToLose = impl_NumberOfBits( nMul ) - int( nSignificantBits );
- const int nDivBitsToLose = impl_NumberOfBits( nDiv ) - int( nSignificantBits );
-
- int nToLose = nMulBitsToLose < nDivBitsToLose ? nMulBitsToLose : nDivBitsToLose;
- nToLose = nToLose < 0 ? 0 : nToLose;
-
- // Remove the bits
- nMul >>= nToLose;
- nDiv >>= nToLose;
-
- if ( !nMul || !nDiv )
- {
- // Return without reduction
- OSL_FAIL( "Oops, we reduced too much..." );
- return;
- }
-
- rRational.assign( bNeg? -long( nMul ): long( nMul ), nDiv );
-}
-
-SvStream& ReadFraction(SvStream& rIStream, boost::rational<long>& rRational)
-{
- sal_Int32 nTmpNumerator(0), nTmpDenominator(0);
- rIStream.ReadInt32( nTmpNumerator );
- rIStream.ReadInt32( nTmpDenominator );
- // NOTE: use rational zero for invalid rationals - avoid boost::bad_rational() exception
- if (nTmpDenominator == 0) {
- nTmpNumerator = 0;
- nTmpDenominator = 1;
- }
- rRational.assign( nTmpNumerator, nTmpDenominator );
- return rIStream;
-}
-
-SvStream& WriteFraction(SvStream& rOStream, const boost::rational<long>& rRational)
-{
- //fdo#39428 SvStream no longer supports operator<<(long)
- rOStream.WriteInt32( sal::static_int_cast<sal_Int32>(rRational.numerator()) );
- rOStream.WriteInt32( sal::static_int_cast<sal_Int32>(rRational.denominator()) );
- return rOStream;
-}
-
-/* vim:set shiftwidth=4 softtabstop=4 expandtab: */