diff options
author | Ashod Nakashian <ashodnakashian@yahoo.com> | 2015-08-20 21:06:06 -0400 |
---|---|---|
committer | Thorsten Behrens <Thorsten.Behrens@CIB.de> | 2015-08-23 21:19:20 +0000 |
commit | b103e7d786f5b7ec6cfe4f53f2ca317f06ceabc5 (patch) | |
tree | 88b07d43a7ea73bd47cf74529ca6190011f7778e /vcl/qa/cppunit | |
parent | a401cf33b2e05d1778faef8e4fdd1043d3eb9b2e (diff) |
vcl: unittests for Timer and AutoTimer.
Enabled VCL Timer unittests on Windows builds and added two unittests to
detect misfiring of timer events.
Due to the nature of timer events having virtually no guarantees on
non-realtime operating systems, the tests may fail randomly under
different system loads. The tests repeat a few times in such cases, but
still there are no guarantees.
These tests are added to detect gross breaks in the timer algorithms and
to improve certain corner cases. They are designed to minimize any
random failures.
Posterity might hate me for committing such unittests, so I added
TEST_TIMERPRECISION directive to include/exclude the tests at compile
time. It should be enabled if it causes more harm than good.
Change-Id: If2856f194cb4732c84900113bdb969f397f67d5a
Reviewed-on: https://gerrit.libreoffice.org/17906
Reviewed-by: Thorsten Behrens <Thorsten.Behrens@CIB.de>
Tested-by: Thorsten Behrens <Thorsten.Behrens@CIB.de>
Diffstat (limited to 'vcl/qa/cppunit')
-rw-r--r-- | vcl/qa/cppunit/timer.cxx | 109 |
1 files changed, 105 insertions, 4 deletions
diff --git a/vcl/qa/cppunit/timer.cxx b/vcl/qa/cppunit/timer.cxx index 88807fc76207..85dc9ac49e20 100644 --- a/vcl/qa/cppunit/timer.cxx +++ b/vcl/qa/cppunit/timer.cxx @@ -22,6 +22,8 @@ #include "salinst.hxx" // #define TEST_WATCHDOG +// Comment if UT fails randomly. +#define TEST_TIMERPRECISION /// Avoid our timer tests just wedging the build if they fail. class WatchDog : public osl::Thread @@ -44,7 +46,7 @@ public: } }; -static WatchDog aWatchDog( 10 /* 10 secs should be enough */); +static WatchDog aWatchDog( 12 /* 12 secs should be enough */); class TimerTest : public test::BootstrapFixture { @@ -58,6 +60,7 @@ public: #endif void testDurations(); void testAutoTimer(); + void testMultiAutoTimers(); void testRecursiveTimer(); void testSlowTimerCallback(); @@ -69,6 +72,7 @@ public: #endif CPPUNIT_TEST(testDurations); CPPUNIT_TEST(testAutoTimer); + CPPUNIT_TEST(testMultiAutoTimers); CPPUNIT_TEST(testRecursiveTimer); CPPUNIT_TEST(testSlowTimerCallback); @@ -117,6 +121,7 @@ void TimerTest::testIdle() // tdf#91727 void TimerTest::testIdleMainloop() { +#ifndef WNT bool bTriggered = false; IdleBool aTest( bTriggered ); // coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone @@ -131,6 +136,7 @@ void TimerTest::testIdleMainloop() pSVData->maAppData.mnDispatchLevel--; } CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered); +#endif } // -------------------------------------------------------------------- @@ -189,11 +195,106 @@ public: void TimerTest::testAutoTimer() { + const sal_Int32 nDurationMs = 30; + const sal_Int32 nEventsCount = 5; + const double exp = (nDurationMs * nEventsCount); + sal_Int32 nCount = 0; - AutoTimerCount aCount(1, nCount); - while (nCount < 100) { - Application::Yield(); + double dur = 0; + std::ostringstream msg; + + // Repeat when we have random latencies. + // This is expected on non-realtime OSes. + for (int i = 0; i < 10; ++i) + { + const auto start = std::chrono::high_resolution_clock::now(); + nCount = 0; + AutoTimerCount aCount(nDurationMs, nCount); + while (nCount < nEventsCount) { + Application::Yield(); + } + + const auto end = std::chrono::high_resolution_clock::now(); + dur = std::chrono::duration<double, std::milli>(end - start).count(); + + msg << std::setprecision(2) << std::fixed + << "periodic multi-timer - dur: " + << dur << " (" << exp << ") ms." << std::endl; + + // +/- 20% should be reasonable enough a margin. + if (dur >= (exp * 0.8) && dur <= (exp * 1.2)) + { + // Success. + return; + } + } + +#ifdef TEST_TIMERPRECISION + CPPUNIT_FAIL(msg.str().c_str()); +#endif +} + +void TimerTest::testMultiAutoTimers() +{ + // The behavior of the timers change drastically + // when multiple timers are present. + // The worst, in my tests, is when two + // timers with 1ms period exist with a + // third of much longer period. + + const sal_Int32 nDurationMsX = 5; + const sal_Int32 nDurationMsY = 10; + const sal_Int32 nDurationMs = 40; + const sal_Int32 nEventsCount = 5; + const double exp = (nDurationMs * nEventsCount); + const double expX = (exp / nDurationMsX); + const double expY = (exp / nDurationMsY); + + double dur = 0; + sal_Int32 nCountX = 0; + sal_Int32 nCountY = 0; + sal_Int32 nCount = 0; + std::ostringstream msg; + + // Repeat when we have random latencies. + // This is expected on non-realtime OSes. + for (int i = 0; i < 10; ++i) + { + nCountX = 0; + nCountY = 0; + nCount = 0; + + const auto start = std::chrono::high_resolution_clock::now(); + AutoTimerCount aCountX(nDurationMsX, nCountX); + AutoTimerCount aCountY(nDurationMsY, nCountY); + + AutoTimerCount aCount(nDurationMs, nCount); + while (nCount < nEventsCount) { + Application::Yield(); + } + + const auto end = std::chrono::high_resolution_clock::now(); + dur = std::chrono::duration<double, std::milli>(end - start).count(); + + msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: " + << dur << " (" << exp << ") ms, nCount: " << nCount + << " (" << nEventsCount << "), nCountX: " << nCountX + << " (" << expX << "), nCountY: " << nCountY + << " (" << expY << ")." << std::endl; + + // +/- 20% should be reasonable enough a margin. + if (dur >= (exp * 0.8) && dur <= (exp * 1.2) && + nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) && + nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2)) + { + // Success. + return; + } } + +#ifdef TEST_TIMERPRECISION + CPPUNIT_FAIL(msg.str().c_str()); +#endif } // -------------------------------------------------------------------- |