diff options
-rw-r--r-- | external/libpng/0001-ACES-AP0-adjusted-fixes.patch.1 | 239 |
1 files changed, 219 insertions, 20 deletions
diff --git a/external/libpng/0001-ACES-AP0-adjusted-fixes.patch.1 b/external/libpng/0001-ACES-AP0-adjusted-fixes.patch.1 index af8b53554ebc..7706f71139bb 100644 --- a/external/libpng/0001-ACES-AP0-adjusted-fixes.patch.1 +++ b/external/libpng/0001-ACES-AP0-adjusted-fixes.patch.1 @@ -1,27 +1,107 @@ -From e06f9a3bece6130212b244ac4e1a1d316990f3c0 Mon Sep 17 00:00:00 2001 +From 521e8e8f7f3ef05135380d5b755e147826364da5 Mon Sep 17 00:00:00 2001 From: John Bowler <jbowler@acm.org> Date: Mon, 16 Sep 2024 17:30:38 -0700 Subject: [PATCH] ACES AP0 adjusted fixes -The subtracts in PNG_XYZ_from_xy might be producing integer overflow -with some valid but extreme xy values. This re-introduces the previous -checks but with less limited bounds; sufficient I believe to accomodate -any reasonable set of endpoints. +The subtracts in PNG_XYZ_from_xy are producing integer overflow with +some valid but extreme xy values. This re-introduces the previous +checks but with less limited bounds; sufficient to accomodate the +ACEScg end points (ACES AP1) but not for the ACES AP0 end points. Those +were not working anyway because libpng reads the cHRM parameters as +unsigned values so they must always be at least 0. -This is a temporary fix since it outlaws valid PNG cHRM chunks; the only -valid approaches are not to check or to using floating point arithmetic -internally. +A better solution requires recognizing reasonable negative values (ones +which violate the current spec) and allowing them too, at least on read. Signed-off-by: John Bowler <jbowler@acm.org> --- - png.c | 14 ++++++++++++++ - 1 file changed, 14 insertions(+) + png.c | 156 ++++++++++++++++++++++++++++++++++++++++++++-------------- + 1 file changed, 120 insertions(+), 36 deletions(-) diff --git a/png.c b/png.c -index 500daea5f..5d6db2974 100644 +index 500daea5f..8a1e2a451 100644 --- a/png.c +++ b/png.c -@@ -1289,6 +1289,20 @@ png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) +@@ -1203,22 +1203,66 @@ png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr) + #endif /* GAMMA */ + + #ifdef PNG_COLORSPACE_SUPPORTED +-static int +-png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1, +- png_int_32 addend2) { +- /* Safely add three integers. Returns 0 on success, 1 on overlow. ++static png_int_32 ++png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error) ++{ ++ /* Safely add two fixed point values setting an error flag and returning 0.5 ++ * on overflow. + * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore + * relying on addition of two positive values producing a negative one is not + * safe. + */ +- int addend0 = *addend0_and_result; +- if (0x7fffffff - addend0 < addend1) +- return 1; +- addend0 += addend1; +- if (0x7fffffff - addend1 < addend2) +- return 1; +- *addend0_and_result = addend0 + addend2; +- return 0; ++ if (addend0 > 0) ++ { ++ if (0x7fffffff - addend0 >= addend1) ++ return addend0+addend1; ++ } ++ else if (addend0 < 0) ++ { ++ if (-0x7fffffff - addend0 <= addend1) ++ return addend0+addend1; ++ } ++ else ++ return addend1; ++ ++ *error = 1; ++ return PNG_FP_1/2; ++} ++ ++static png_int_32 ++png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error) ++{ ++ /* As above but calculate addend0-addend1. */ ++ if (addend1 > 0) ++ { ++ if (-0x7fffffff + addend1 <= addend0) ++ return addend0-addend1; ++ } ++ else if (addend1 < 0) ++ { ++ if (0x7fffffff + addend1 >= addend0) ++ return addend0+addend1; ++ } ++ else ++ return addend0; ++ ++ *error = 1; ++ return PNG_FP_1/2; ++} ++ ++static int ++png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1, ++ png_int_32 addend2) ++{ ++ /* Safely add three integers. Returns 0 on success, 1 on overflow. Does not ++ * set the result on overflow. ++ */ ++ int error = 0; ++ int result = png_fp_add(*addend0_and_result, ++ png_fp_add(addend1, addend2, &error), ++ &error); ++ if (!error) *addend0_and_result = result; ++ return error; + } + + /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for +@@ -1289,6 +1333,29 @@ png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) png_fixed_point red_inverse, green_inverse, blue_scale; png_fixed_point left, right, denominator; @@ -29,19 +109,138 @@ index 500daea5f..5d6db2974 100644 + * have end points with 0 tristimulus values (these are impossible end + * points, but they are used to cover the possible colors). We check + * xy->whitey against 5, not 0, to avoid a possible integer overflow. ++ * ++ * The limits here will *not* accept ACES AP0, where bluey is -7700 ++ * (-0.0770) because the PNG spec itself requires the xy values to be ++ * unsigned. whitey is also required to be 5 or more to avoid overflow. ++ * ++ * Instead the upper limits have been relaxed to accomodate ACES AP1 where ++ * redz ends up as -600 (-0.006). ProPhotoRGB was already "in range." ++ * The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy. + */ -+ if (xy->redx < -PNG_FP_1 || xy->redx > 2*PNG_FP_1) return 1; -+ if (xy->redy < -PNG_FP_1 || xy->redy > 2*PNG_FP_1) return 1; -+ if (xy->greenx < -PNG_FP_1 || xy->greenx > 2*PNG_FP_1) return 1; -+ if (xy->greeny < -PNG_FP_1 || xy->greeny > 2*PNG_FP_1) return 1; -+ if (xy->bluex < -PNG_FP_1 || xy->bluex > 2*PNG_FP_1) return 1; -+ if (xy->bluey < -PNG_FP_1 || xy->bluey > 2*PNG_FP_1) return 1; -+ if (xy->whitex < -PNG_FP_1 || xy->whitex > 2*PNG_FP_1) return 1; -+ if (xy->whitey < -PNG_FP_1 || xy->whitey > 2*PNG_FP_1) return 1; ++ const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10); ++ if (xy->redx < 0 || xy->redx > fpLimit) return 1; ++ if (xy->redy < 0 || xy->redy > fpLimit-xy->redx) return 1; ++ if (xy->greenx < 0 || xy->greenx > fpLimit) return 1; ++ if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1; ++ if (xy->bluex < 0 || xy->bluex > fpLimit) return 1; ++ if (xy->bluey < 0 || xy->bluey > fpLimit-xy->bluex) return 1; ++ if (xy->whitex < 0 || xy->whitex > fpLimit) return 1; ++ if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1; + /* The reverse calculation is more difficult because the original tristimulus * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 * derived values were recorded in the cHRM chunk; +@@ -1432,18 +1499,23 @@ png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) + * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) + * + * Accuracy: +- * The input values have 5 decimal digits of accuracy. The values are all in +- * the range 0 < value < 1, so simple products are in the same range but may +- * need up to 10 decimal digits to preserve the original precision and avoid +- * underflow. Because we are using a 32-bit signed representation we cannot +- * match this; the best is a little over 9 decimal digits, less than 10. ++ * The input values have 5 decimal digits of accuracy. ++ * ++ * In the previous implementation the values were all in the range 0 < value ++ * < 1, so simple products are in the same range but may need up to 10 ++ * decimal digits to preserve the original precision and avoid underflow. ++ * Because we are using a 32-bit signed representation we cannot match this; ++ * the best is a little over 9 decimal digits, less than 10. ++ * ++ * This range has now been extended to allow values up to 1.1, or 110,000 in ++ * fixed point. + * + * The approach used here is to preserve the maximum precision within the + * signed representation. Because the red-scale calculation above uses the +- * difference between two products of values that must be in the range -1..+1 +- * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The +- * factor is irrelevant in the calculation because it is applied to both +- * numerator and denominator. ++ * difference between two products of values that must be in the range ++ * -1.1..+1.1 it is sufficient to divide the product by 8; ++ * ceil(121,000/32767*2). The factor is irrelevant in the calculation ++ * because it is applied to both numerator and denominator. + * + * Note that the values of the differences of the products of the + * chromaticities in the above equations tend to be small, for example for +@@ -1465,19 +1537,25 @@ png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) + * Adobe Wide Gamut RGB + * 0.258728243040113 0.724682314948566 0.016589442011321 + */ +- /* By the argument, above overflow should be impossible here. The return +- * value of 2 indicates an internal error to the caller. ++ int error = 0; ++ ++ /* By the argument above overflow should be impossible here, however the ++ * code now simply returns a failure code. The xy subtracts in the arguments ++ * to png_muldiv are *not* checked for overflow because the checks at the ++ * start guarantee they are in the range 0..110000 and png_fixed_point is a ++ * 32-bit signed number. + */ +- if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0) ++ if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0) + return 1; +- if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0) ++ if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) == 0) + return 1; +- denominator = left - right; ++ denominator = png_fp_sub(left, right, &error); ++ if (error) return 1; + + /* Now find the red numerator. */ +- if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) ++ if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0) + return 1; +- if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0) ++ if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) == 0) + return 1; + + /* Overflow is possible here and it indicates an extreme set of PNG cHRM +@@ -1485,29 +1563,35 @@ png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) + * scale value because this allows us to delay the multiplication of white-y + * into the denominator, which tends to produce a small number. + */ +- if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 || ++ if (png_muldiv(&red_inverse, xy->whitey, denominator, ++ png_fp_sub(left, right, &error)) == 0 || error || + red_inverse <= xy->whitey /* r+g+b scales = white scale */) + return 1; + + /* Similarly for green_inverse: */ +- if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0) ++ if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0) + return 1; +- if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) ++ if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0) + return 1; +- if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 || ++ if (png_muldiv(&green_inverse, xy->whitey, denominator, ++ png_fp_sub(left, right, &error)) == 0 || error || + green_inverse <= xy->whitey) + return 1; + + /* And the blue scale, the checks above guarantee this can't overflow but it + * can still produce 0 for extreme cHRM values. + */ +- blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) - +- png_reciprocal(green_inverse); +- if (blue_scale <= 0) ++ blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey), ++ png_reciprocal(red_inverse), &error), ++ png_reciprocal(green_inverse), &error); ++ if (error || blue_scale <= 0) + return 1; + + +- /* And fill in the png_XYZ: */ ++ /* And fill in the png_XYZ. Again the subtracts are safe because of the ++ * checks on the xy values at the start (the subtracts just calculate the ++ * corresponding z values.) ++ */ + if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0) + return 1; + if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0) -- 2.46.0 |