summaryrefslogtreecommitdiff
path: root/agg/inc/agg_span_gradient.h
diff options
context:
space:
mode:
Diffstat (limited to 'agg/inc/agg_span_gradient.h')
-rwxr-xr-xagg/inc/agg_span_gradient.h422
1 files changed, 0 insertions, 422 deletions
diff --git a/agg/inc/agg_span_gradient.h b/agg/inc/agg_span_gradient.h
deleted file mode 100755
index 6bac1c652a84..000000000000
--- a/agg/inc/agg_span_gradient.h
+++ /dev/null
@@ -1,422 +0,0 @@
-//----------------------------------------------------------------------------
-// Anti-Grain Geometry - Version 2.3
-// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
-//
-// Permission to copy, use, modify, sell and distribute this software
-// is granted provided this copyright notice appears in all copies.
-// This software is provided "as is" without express or implied
-// warranty, and with no claim as to its suitability for any purpose.
-//
-//----------------------------------------------------------------------------
-// Contact: mcseem@antigrain.com
-// mcseemagg@yahoo.com
-// http://www.antigrain.com
-//----------------------------------------------------------------------------
-
-#ifndef AGG_SPAN_GRADIENT_INCLUDED
-#define AGG_SPAN_GRADIENT_INCLUDED
-
-#include <math.h>
-#include <stdlib.h>
-#include <string.h>
-#include "agg_basics.h"
-#include "agg_span_generator.h"
-#include "agg_math.h"
-#include "agg_array.h"
-
-
-namespace agg
-{
-
- enum
- {
- gradient_subpixel_shift = 4, //-----gradient_subpixel_shift
- gradient_subpixel_size = 1 << gradient_subpixel_shift, //-----gradient_subpixel_size
- gradient_subpixel_mask = gradient_subpixel_size - 1 //-----gradient_subpixel_mask
- };
-
-
-
- //==========================================================span_gradient
- template<class ColorT,
- class Interpolator,
- class GradientF,
- class ColorF,
- class Allocator = span_allocator<ColorT> >
- class span_gradient : public span_generator<ColorT, Allocator>
- {
- public:
- typedef Interpolator interpolator_type;
- typedef Allocator alloc_type;
- typedef ColorT color_type;
- typedef span_generator<color_type, alloc_type> base_type;
-
- enum
- {
- downscale_shift = interpolator_type::subpixel_shift -
- gradient_subpixel_shift
- };
-
- //--------------------------------------------------------------------
- span_gradient(alloc_type& alloc) : base_type(alloc) {}
-
- //--------------------------------------------------------------------
- span_gradient(alloc_type& alloc,
- interpolator_type& inter,
- const GradientF& gradient_function_,
- const ColorF& color_function_,
- double d1_, double d2_) :
- base_type(alloc),
- m_interpolator(&inter),
- m_gradient_function(&gradient_function_),
- m_color_function(&color_function_),
- m_d1(int(d1_ * gradient_subpixel_size)),
- m_d2(int(d2_ * gradient_subpixel_size))
- {}
-
- //--------------------------------------------------------------------
- interpolator_type& interpolator() { return *m_interpolator; }
- const GradientF& gradient_function() const { return *m_gradient_function; }
- const ColorF& color_function() const { return *m_color_function; }
- double d1() const { return double(m_d1) / gradient_subpixel_size; }
- double d2() const { return double(m_d2) / gradient_subpixel_size; }
-
- //--------------------------------------------------------------------
- void interpolator(interpolator_type& i) { m_interpolator = &i; }
- void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
- void color_function(const ColorF& cf) { m_color_function = &cf; }
- void d1(double v) { m_d1 = int(v * gradient_subpixel_size); }
- void d2(double v) { m_d2 = int(v * gradient_subpixel_size); }
-
- //--------------------------------------------------------------------
- color_type* generate(int x, int y, unsigned len)
- {
- color_type* span = base_type::allocator().span();
- int dd = m_d2 - m_d1;
- if(dd < 1) dd = 1;
- m_interpolator->begin(x+0.5, y+0.5, len);
- do
- {
- m_interpolator->coordinates(&x, &y);
- int d = m_gradient_function->calculate(x >> downscale_shift,
- y >> downscale_shift, dd);
- d = ((d - m_d1) * (int)m_color_function->size()) / dd;
- if(d < 0) d = 0;
- if(d >= (int)m_color_function->size()) d = m_color_function->size() - 1;
- *span++ = (*m_color_function)[d];
- ++(*m_interpolator);
- }
- while(--len);
- return base_type::allocator().span();
- }
-
- private:
- interpolator_type* m_interpolator;
- const GradientF* m_gradient_function;
- const ColorF* m_color_function;
- int m_d1;
- int m_d2;
- };
-
-
-
-
- //=====================================================gradient_linear_color
- template<class ColorT>
- struct gradient_linear_color
- {
- typedef ColorT color_type;
-
- gradient_linear_color() {}
- gradient_linear_color(const color_type& c1, const color_type& c2,
- unsigned size = 256) :
- m_c1(c1), m_c2(c2), m_size(size) {}
-
- unsigned size() const { return m_size; }
- color_type operator [] (unsigned v) const
- {
- return m_c1.gradient(m_c2, double(v) / double(m_size - 1));
- }
-
- void colors(const color_type& c1, const color_type& c2, unsigned size = 256)
- {
- m_c1 = c1;
- m_c2 = c2;
- m_size = size;
- }
-
- color_type m_c1;
- color_type m_c2;
- unsigned m_size;
- };
-
-
- //==========================================================gradient_circle
- class gradient_circle
- {
- // Actually the same as radial. Just for compatibility
- public:
- static AGG_INLINE int calculate(int x, int y, int)
- {
- return int(fast_sqrt(x*x + y*y));
- }
- };
-
-
- //==========================================================gradient_radial
- class gradient_radial
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int)
- {
- return int(fast_sqrt(x*x + y*y));
- }
- };
-
-
- //========================================================gradient_radial_d
- class gradient_radial_d
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int)
- {
- return int(sqrt(double(x)*double(x) + double(y)*double(y)));
- }
- };
-
-
- //====================================================gradient_radial_focus
- class gradient_radial_focus
- {
- public:
- //---------------------------------------------------------------------
- gradient_radial_focus() :
- m_radius(100 * gradient_subpixel_size),
- m_focus_x(0),
- m_focus_y(0)
- {
- update_values();
- }
-
- //---------------------------------------------------------------------
- gradient_radial_focus(double r, double fx, double fy) :
- m_radius (int(r * gradient_subpixel_size)),
- m_focus_x(int(fx * gradient_subpixel_size)),
- m_focus_y(int(fy * gradient_subpixel_size))
- {
- update_values();
- }
-
- //---------------------------------------------------------------------
- void init(double r, double fx, double fy)
- {
- m_radius = int(r * gradient_subpixel_size);
- m_focus_x = int(fx * gradient_subpixel_size);
- m_focus_y = int(fy * gradient_subpixel_size);
- update_values();
- }
-
- //---------------------------------------------------------------------
- double radius() const { return double(m_radius) / gradient_subpixel_size; }
- double focus_x() const { return double(m_focus_x) / gradient_subpixel_size; }
- double focus_y() const { return double(m_focus_y) / gradient_subpixel_size; }
-
- //---------------------------------------------------------------------
- int calculate(int x, int y, int d) const
- {
- double solution_x;
- double solution_y;
-
- // Special case to avoid divide by zero or very near zero
- //---------------------------------
- if(x == int(m_focus_x))
- {
- solution_x = m_focus_x;
- solution_y = 0.0;
- solution_y += (y > m_focus_y) ? m_trivial : -m_trivial;
- }
- else
- {
- // Slope of the focus-current line
- //-------------------------------
- double slope = double(y - m_focus_y) / double(x - m_focus_x);
-
- // y-intercept of that same line
- //--------------------------------
- double yint = double(y) - (slope * x);
-
- // Use the classical quadratic formula to calculate
- // the intersection point
- //--------------------------------
- double a = (slope * slope) + 1;
- double b = 2 * slope * yint;
- double c = yint * yint - m_radius2;
- double det = sqrt((b * b) - (4.0 * a * c));
- solution_x = -b;
-
- // Choose the positive or negative root depending
- // on where the X coord lies with respect to the focus.
- solution_x += (x < m_focus_x) ? -det : det;
- solution_x /= 2.0 * a;
-
- // Calculating of Y is trivial
- solution_y = (slope * solution_x) + yint;
- }
-
- // Calculate the percentage (0...1) of the current point along the
- // focus-circumference line and return the normalized (0...d) value
- //-------------------------------
- solution_x -= double(m_focus_x);
- solution_y -= double(m_focus_y);
- double int_to_focus = solution_x * solution_x + solution_y * solution_y;
- double cur_to_focus = double(x - m_focus_x) * double(x - m_focus_x) +
- double(y - m_focus_y) * double(y - m_focus_y);
-
- return int(sqrt(cur_to_focus / int_to_focus) * d);
- }
-
- private:
- //---------------------------------------------------------------------
- void update_values()
- {
- // For use in the quadractic equation
- //-------------------------------
- m_radius2 = double(m_radius) * double(m_radius);
-
- double dist = sqrt(double(m_focus_x) * double(m_focus_x) +
- double(m_focus_y) * double(m_focus_y));
-
- // Test if distance from focus to center is greater than the radius
- // For the sake of assurance factor restrict the point to be
- // no further than 99% of the radius.
- //-------------------------------
- double r = m_radius * 0.99;
- if(dist > r)
- {
- // clamp focus to radius
- // x = r cos theta, y = r sin theta
- //------------------------
- double a = atan2(double(m_focus_y), double(m_focus_x));
- m_focus_x = int(r * cos(a));
- m_focus_y = int(r * sin(a));
- }
-
- // Calculate the solution to be used in the case where x == focus_x
- //------------------------------
- m_trivial = sqrt(m_radius2 - (m_focus_x * m_focus_x));
- }
-
- int m_radius;
- int m_focus_x;
- int m_focus_y;
- double m_radius2;
- double m_trivial;
- };
-
-
-
- //==============================================================gradient_x
- class gradient_x
- {
- public:
- static int calculate(int x, int, int) { return x; }
- };
-
-
- //==============================================================gradient_y
- class gradient_y
- {
- public:
- static int calculate(int, int y, int) { return y; }
- };
-
-
- //========================================================gradient_diamond
- class gradient_diamond
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int)
- {
- int ax = abs(x);
- int ay = abs(y);
- return ax > ay ? ax : ay;
- }
- };
-
-
- //=============================================================gradient_xy
- class gradient_xy
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int d)
- {
- return abs(x) * abs(y) / d;
- }
- };
-
-
- //========================================================gradient_sqrt_xy
- class gradient_sqrt_xy
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int)
- {
- return fast_sqrt(abs(x) * abs(y));
- }
- };
-
-
- //==========================================================gradient_conic
- class gradient_conic
- {
- public:
- static AGG_INLINE int calculate(int x, int y, int d)
- {
- return int(fabs(atan2(double(y), double(x))) * double(d) / pi);
- }
- };
-
-
- //=================================================gradient_repeat_adaptor
- template<class GradientF> class gradient_repeat_adaptor
- {
- public:
- gradient_repeat_adaptor(const GradientF& gradient) :
- m_gradient(&gradient) {}
-
- AGG_INLINE int calculate(int x, int y, int d) const
- {
- int ret = m_gradient->calculate(x, y, d) % d;
- if(ret < 0) ret += d;
- return ret;
- }
-
- private:
- const GradientF* m_gradient;
- };
-
-
- //================================================gradient_reflect_adaptor
- template<class GradientF> class gradient_reflect_adaptor
- {
- public:
- gradient_reflect_adaptor(const GradientF& gradient) :
- m_gradient(&gradient) {}
-
- AGG_INLINE int calculate(int x, int y, int d) const
- {
- int d2 = d << 1;
- int ret = m_gradient->calculate(x, y, d) % d2;
- if(ret < 0) ret += d2;
- if(ret >= d) ret = d2 - ret;
- return ret;
- }
-
- private:
- const GradientF* m_gradient;
- };
-
-
-}
-
-#endif