summaryrefslogtreecommitdiff
path: root/onlineupdate/source/update/inc/mozilla/UniquePtr.h
diff options
context:
space:
mode:
Diffstat (limited to 'onlineupdate/source/update/inc/mozilla/UniquePtr.h')
-rw-r--r--onlineupdate/source/update/inc/mozilla/UniquePtr.h659
1 files changed, 0 insertions, 659 deletions
diff --git a/onlineupdate/source/update/inc/mozilla/UniquePtr.h b/onlineupdate/source/update/inc/mozilla/UniquePtr.h
deleted file mode 100644
index 6fad8d1cfb8a..000000000000
--- a/onlineupdate/source/update/inc/mozilla/UniquePtr.h
+++ /dev/null
@@ -1,659 +0,0 @@
-/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
-/* vim: set ts=8 sts=2 et sw=2 tw=80: */
-/* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
-
-/* Smart pointer managing sole ownership of a resource. */
-
-#ifndef mozilla_UniquePtr_h
-#define mozilla_UniquePtr_h
-
-#include "mozilla/Assertions.h"
-#include "mozilla/Attributes.h"
-#include "mozilla/Compiler.h"
-#include "mozilla/Move.h"
-#include "mozilla/Pair.h"
-#include "mozilla/TypeTraits.h"
-
-namespace mozilla {
-
-template<typename T> class DefaultDelete;
-template<typename T, class D = DefaultDelete<T>> class UniquePtr;
-
-} // namespace mozilla
-
-namespace mozilla {
-
-/**
- * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
- * transferred out of a UniquePtr through explicit action, but otherwise the
- * resource is destroyed when the UniquePtr is destroyed.
- *
- * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
- * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
- * obviously *can't* copy ownership of its singly-owned resource. So what
- * happens if you try to copy one? Bizarrely, ownership is implicitly
- * *transferred*, preserving single ownership but breaking code that assumes a
- * copy of an object is identical to the original. (This is why auto_ptr is
- * prohibited in STL containers.)
- *
- * UniquePtr solves this problem by being *movable* rather than copyable.
- * Instead of passing a |UniquePtr u| directly to the constructor or assignment
- * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
- * ownership out of |u|, into the target of the construction/assignment. After
- * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
- * This preserves single ownership but also allows UniquePtr to be moved by
- * algorithms that have been made move-safe. (Note: if |u| is instead a
- * temporary expression, don't use |Move()|: just pass the expression, because
- * it's already move-ready. For more information see Move.h.)
- *
- * UniquePtr is also better than std::auto_ptr in that the deletion operation is
- * customizable. An optional second template parameter specifies a class that
- * (through its operator()(T*)) implements the desired deletion policy. If no
- * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
- * |delete| or |delete[]| the resource, depending whether the resource is an
- * array. Custom deletion policies ideally should be empty classes (no member
- * fields, no member fields in base classes, no virtual methods/inheritance),
- * because then UniquePtr can be just as efficient as a raw pointer.
- *
- * Use of UniquePtr proceeds like so:
- *
- * UniquePtr<int> g1; // initializes to nullptr
- * g1.reset(new int); // switch resources using reset()
- * g1 = nullptr; // clears g1, deletes the int
- *
- * UniquePtr<int> g2(new int); // owns that int
- * int* p = g2.release(); // g2 leaks its int -- still requires deletion
- * delete p; // now freed
- *
- * struct S { int x; S(int x) : x(x) {} };
- * UniquePtr<S> g3, g4(new S(5));
- * g3 = Move(g4); // g3 owns the S, g4 cleared
- * S* p = g3.get(); // g3 still owns |p|
- * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
- * assert((*g3).x == 5); // also operator* (again, if not cleared)
- * Swap(g3, g4); // g4 now owns the S, g3 cleared
- * g3.swap(g4); // g3 now owns the S, g4 cleared
- * UniquePtr<S> g5(Move(g3)); // g5 owns the S, g3 cleared
- * g5.reset(); // deletes the S, g5 cleared
- *
- * struct FreePolicy { void operator()(void* p) { free(p); } };
- * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
- * int* ptr = g6.get();
- * g6 = nullptr; // calls free(ptr)
- *
- * Now, carefully note a few things you *can't* do:
- *
- * UniquePtr<int> b1;
- * b1 = new int; // BAD: can only assign another UniquePtr
- * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
- *
- * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
- * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
- *
- * (Note that changing a UniquePtr to store a direct |new| expression is
- * permitted, but usually you should use MakeUnique, defined at the end of this
- * header.)
- *
- * A few miscellaneous notes:
- *
- * UniquePtr, when not instantiated for an array type, can be move-constructed
- * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
- * instantiations where U converts to T and E converts to D. If you want to use
- * this, you're going to have to specify a deletion policy for both UniquePtr
- * instantiations, and T pretty much has to have a virtual destructor. In other
- * words, this doesn't work:
- *
- * struct Base { virtual ~Base() {} };
- * struct Derived : Base {};
- *
- * UniquePtr<Base> b1;
- * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
- * UniquePtr<Derived> d1(Move(b));
- *
- * UniquePtr<Base> b2;
- * UniquePtr<Derived, DefaultDelete<Base>> d2(Move(b2)); // okay
- *
- * UniquePtr is specialized for array types. Specializing with an array type
- * creates a smart-pointer version of that array -- not a pointer to such an
- * array.
- *
- * UniquePtr<int[]> arr(new int[5]);
- * arr[0] = 4;
- *
- * What else is different? Deletion of course uses |delete[]|. An operator[]
- * is provided. Functionality that doesn't make sense for arrays is removed.
- * The constructors and mutating methods only accept array pointers (not T*, U*
- * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
- *
- * It's perfectly okay to return a UniquePtr from a method to assure the related
- * resource is properly deleted. You'll need to use |Move()| when returning a
- * local UniquePtr. Otherwise you can return |nullptr|, or you can return
- * |UniquePtr(ptr)|.
- *
- * UniquePtr will commonly be a member of a class, with lifetime equivalent to
- * that of that class. If you want to expose the related resource, you could
- * expose a raw pointer via |get()|, but ownership of a raw pointer is
- * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
- * This prohibits mutation but still allows use of |get()| when needed (but
- * operator-> is preferred). Of course, you can only use this smart pointer as
- * long as the enclosing class instance remains live -- no different than if you
- * exposed the |get()| raw pointer.
- *
- * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
- * argument. To specify an inout parameter (where the method may or may not
- * take ownership of the resource, or reset it), or to specify an out parameter
- * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
- * argument. To unconditionally transfer ownership of a UniquePtr
- * into a method, use a |UniquePtr| argument. To conditionally transfer
- * ownership of a resource into a method, should the method want it, use a
- * |UniquePtr&&| argument.
- */
-template<typename T, class D>
-class UniquePtr
-{
-public:
- typedef T* Pointer;
- typedef T ElementType;
- typedef D DeleterType;
-
-private:
- Pair<Pointer, DeleterType> mTuple;
-
- Pointer& ptr() { return mTuple.first(); }
- const Pointer& ptr() const { return mTuple.first(); }
-
- DeleterType& del() { return mTuple.second(); }
- const DeleterType& del() const { return mTuple.second(); }
-
-public:
- /**
- * Construct a UniquePtr containing |nullptr|.
- */
- MOZ_CONSTEXPR UniquePtr()
- : mTuple(static_cast<Pointer>(nullptr), DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
- /**
- * Construct a UniquePtr containing |aPtr|.
- */
- explicit UniquePtr(Pointer aPtr)
- : mTuple(aPtr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
- UniquePtr(Pointer aPtr,
- typename Conditional<IsReference<D>::value,
- D,
- const D&>::Type aD1)
- : mTuple(aPtr, aD1)
- {}
-
- // If you encounter an error with MSVC10 about RemoveReference below, along
- // the lines that "more than one partial specialization matches the template
- // argument list": don't use UniquePtr<T, reference to function>! Ideally
- // you should make deletion use the same function every time, using a
- // deleter policy:
- //
- // // BAD, won't compile with MSVC10, deleter doesn't need to be a
- // // variable at all
- // typedef void (&FreeSignature)(void*);
- // UniquePtr<int, FreeSignature> ptr((int*) malloc(sizeof(int)), free);
- //
- // // GOOD, compiles with MSVC10, deletion behavior statically known and
- // // optimizable
- // struct DeleteByFreeing
- // {
- // void operator()(void* aPtr) { free(aPtr); }
- // };
- //
- // If deletion really, truly, must be a variable: you might be able to work
- // around this with a deleter class that contains the function reference.
- // But this workaround is untried and untested, because variable deletion
- // behavior really isn't something you should use.
- UniquePtr(Pointer aPtr,
- typename RemoveReference<D>::Type&& aD2)
- : mTuple(aPtr, Move(aD2))
- {
- static_assert(!IsReference<D>::value,
- "rvalue deleter can't be stored by reference");
- }
-
- UniquePtr(UniquePtr&& aOther)
- : mTuple(aOther.release(), Forward<DeleterType>(aOther.getDeleter()))
- {}
-
- MOZ_IMPLICIT
- UniquePtr(decltype(nullptr))
- : mTuple(nullptr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
- template<typename U, class E>
- UniquePtr(UniquePtr<U, E>&& aOther,
- typename EnableIf<IsConvertible<typename UniquePtr<U, E>::Pointer,
- Pointer>::value &&
- !IsArray<U>::value &&
- (IsReference<D>::value
- ? IsSame<D, E>::value
- : IsConvertible<E, D>::value),
- int>::Type aDummy = 0)
- : mTuple(aOther.release(), Forward<E>(aOther.getDeleter()))
- {
- }
-
- ~UniquePtr() { reset(nullptr); }
-
- UniquePtr& operator=(UniquePtr&& aOther)
- {
- reset(aOther.release());
- getDeleter() = Forward<DeleterType>(aOther.getDeleter());
- return *this;
- }
-
- template<typename U, typename E>
- UniquePtr& operator=(UniquePtr<U, E>&& aOther)
- {
- static_assert(IsConvertible<typename UniquePtr<U, E>::Pointer,
- Pointer>::value,
- "incompatible UniquePtr pointees");
- static_assert(!IsArray<U>::value,
- "can't assign from UniquePtr holding an array");
-
- reset(aOther.release());
- getDeleter() = Forward<E>(aOther.getDeleter());
- return *this;
- }
-
- UniquePtr& operator=(decltype(nullptr))
- {
- reset(nullptr);
- return *this;
- }
-
- T& operator*() const { return *get(); }
- Pointer operator->() const
- {
- MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr");
- return get();
- }
-
- explicit operator bool() const { return get() != nullptr; }
-
- Pointer get() const { return ptr(); }
-
- DeleterType& getDeleter() { return del(); }
- const DeleterType& getDeleter() const { return del(); }
-
- Pointer release()
- {
- Pointer p = ptr();
- ptr() = nullptr;
- return p;
- }
-
- void reset(Pointer aPtr = Pointer())
- {
- Pointer old = ptr();
- ptr() = aPtr;
- if (old != nullptr) {
- getDeleter()(old);
- }
- }
-
- void swap(UniquePtr& aOther)
- {
- mTuple.swap(aOther.mTuple);
- }
-
-private:
- UniquePtr(const UniquePtr& aOther) = delete; // construct using Move()!
- void operator=(const UniquePtr& aOther) = delete; // assign using Move()!
-};
-
-// In case you didn't read the comment by the main definition (you should!): the
-// UniquePtr<T[]> specialization exists to manage array pointers. It deletes
-// such pointers using delete[], it will reject construction and modification
-// attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
-template<typename T, class D>
-class UniquePtr<T[], D>
-{
-public:
- typedef T* Pointer;
- typedef T ElementType;
- typedef D DeleterType;
-
-private:
- Pair<Pointer, DeleterType> mTuple;
-
-public:
- /**
- * Construct a UniquePtr containing nullptr.
- */
- MOZ_CONSTEXPR UniquePtr()
- : mTuple(static_cast<Pointer>(nullptr), DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
- /**
- * Construct a UniquePtr containing |aPtr|.
- */
- explicit UniquePtr(Pointer aPtr)
- : mTuple(aPtr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
-private:
- // delete[] knows how to handle *only* an array of a single class type. For
- // delete[] to work correctly, it must know the size of each element, the
- // fields and base classes of each element requiring destruction, and so on.
- // So forbid all overloads which would end up invoking delete[] on a pointer
- // of the wrong type.
- template<typename U>
- UniquePtr(U&& aU,
- typename EnableIf<IsPointer<U>::value &&
- IsConvertible<U, Pointer>::value,
- int>::Type aDummy = 0)
- = delete;
-
-public:
- UniquePtr(Pointer aPtr,
- typename Conditional<IsReference<D>::value,
- D,
- const D&>::Type aD1)
- : mTuple(aPtr, aD1)
- {}
-
- // If you encounter an error with MSVC10 about RemoveReference below, along
- // the lines that "more than one partial specialization matches the template
- // argument list": don't use UniquePtr<T[], reference to function>! See the
- // comment by this constructor in the non-T[] specialization above.
- UniquePtr(Pointer aPtr,
- typename RemoveReference<D>::Type&& aD2)
- : mTuple(aPtr, Move(aD2))
- {
- static_assert(!IsReference<D>::value,
- "rvalue deleter can't be stored by reference");
- }
-
-private:
- // Forbidden for the same reasons as stated above.
- template<typename U, typename V>
- UniquePtr(U&& aU, V&& aV,
- typename EnableIf<IsPointer<U>::value &&
- IsConvertible<U, Pointer>::value,
- int>::Type aDummy = 0)
- = delete;
-
-public:
- UniquePtr(UniquePtr&& aOther)
- : mTuple(aOther.release(), Forward<DeleterType>(aOther.getDeleter()))
- {}
-
- MOZ_IMPLICIT
- UniquePtr(decltype(nullptr))
- : mTuple(nullptr, DeleterType())
- {
- static_assert(!IsPointer<D>::value, "must provide a deleter instance");
- static_assert(!IsReference<D>::value, "must provide a deleter instance");
- }
-
- ~UniquePtr() { reset(nullptr); }
-
- UniquePtr& operator=(UniquePtr&& aOther)
- {
- reset(aOther.release());
- getDeleter() = Forward<DeleterType>(aOther.getDeleter());
- return *this;
- }
-
- UniquePtr& operator=(decltype(nullptr))
- {
- reset();
- return *this;
- }
-
- explicit operator bool() const { return get() != nullptr; }
-
- T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
- Pointer get() const { return mTuple.first(); }
-
- DeleterType& getDeleter() { return mTuple.second(); }
- const DeleterType& getDeleter() const { return mTuple.second(); }
-
- Pointer release()
- {
- Pointer p = mTuple.first();
- mTuple.first() = nullptr;
- return p;
- }
-
- void reset(Pointer aPtr = Pointer())
- {
- Pointer old = mTuple.first();
- mTuple.first() = aPtr;
- if (old != nullptr) {
- mTuple.second()(old);
- }
- }
-
- void reset(decltype(nullptr))
- {
- Pointer old = mTuple.first();
- mTuple.first() = nullptr;
- if (old != nullptr) {
- mTuple.second()(old);
- }
- }
-
-private:
- template<typename U>
- void reset(U) = delete;
-
-public:
- void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
-
-private:
- UniquePtr(const UniquePtr& aOther) = delete; // construct using Move()!
- void operator=(const UniquePtr& aOther) = delete; // assign using Move()!
-};
-
-/** A default deletion policy using plain old operator delete. */
-template<typename T>
-class DefaultDelete
-{
-public:
- MOZ_CONSTEXPR DefaultDelete() {}
-
- template<typename U>
- DefaultDelete(const DefaultDelete<U>& aOther,
- typename EnableIf<mozilla::IsConvertible<U*, T*>::value,
- int>::Type aDummy = 0)
- {}
-
- void operator()(T* aPtr) const
- {
- static_assert(sizeof(T) > 0, "T must be complete");
- delete aPtr;
- }
-};
-
-/** A default deletion policy using operator delete[]. */
-template<typename T>
-class DefaultDelete<T[]>
-{
-public:
- MOZ_CONSTEXPR DefaultDelete() {}
-
- void operator()(T* aPtr) const
- {
- static_assert(sizeof(T) > 0, "T must be complete");
- delete[] aPtr;
- }
-
-private:
- template<typename U>
- void operator()(U* aPtr) const = delete;
-};
-
-template<typename T, class D>
-void
-Swap(UniquePtr<T, D>& aX, UniquePtr<T, D>& aY)
-{
- aX.swap(aY);
-}
-
-template<typename T, class D, typename U, class E>
-bool
-operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
-{
- return aX.get() == aY.get();
-}
-
-template<typename T, class D, typename U, class E>
-bool
-operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
-{
- return aX.get() != aY.get();
-}
-
-template<typename T, class D>
-bool
-operator==(const UniquePtr<T, D>& aX, decltype(nullptr))
-{
- return !aX;
-}
-
-template<typename T, class D>
-bool
-operator==(decltype(nullptr), const UniquePtr<T, D>& aX)
-{
- return !aX;
-}
-
-template<typename T, class D>
-bool
-operator!=(const UniquePtr<T, D>& aX, decltype(nullptr))
-{
- return bool(aX);
-}
-
-template<typename T, class D>
-bool
-operator!=(decltype(nullptr), const UniquePtr<T, D>& aX)
-{
- return bool(aX);
-}
-
-// No operator<, operator>, operator<=, operator>= for now because simplicity.
-
-namespace detail {
-
-template<typename T>
-struct UniqueSelector
-{
- typedef UniquePtr<T> SingleObject;
-};
-
-template<typename T>
-struct UniqueSelector<T[]>
-{
- typedef UniquePtr<T[]> UnknownBound;
-};
-
-template<typename T, decltype(sizeof(int)) N>
-struct UniqueSelector<T[N]>
-{
- typedef UniquePtr<T[N]> KnownBound;
-};
-
-} // namespace detail
-
-/**
- * MakeUnique is a helper function for allocating new'd objects and arrays,
- * returning a UniquePtr containing the resulting pointer. The semantics of
- * MakeUnique<Type>(...) are as follows.
- *
- * If Type is an array T[n]:
- * Disallowed, deleted, no overload for you!
- * If Type is an array T[]:
- * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
- * is as if by |new T[n]()|, which value-initializes each element. (If T
- * isn't a class type, this will zero each element. If T is a class type,
- * then roughly speaking, each element will be constructed using its default
- * constructor. See C++11 [dcl.init]p7 for the full gory details.)
- * If Type is non-array T:
- * The arguments passed to MakeUnique<T>(...) are forwarded into a
- * |new T(...)| call, initializing the T as would happen if executing
- * |T(...)|.
- *
- * There are various benefits to using MakeUnique instead of |new| expressions.
- *
- * First, MakeUnique eliminates use of |new| from code entirely. If objects are
- * only created through UniquePtr, then (assuming all explicit release() calls
- * are safe, including transitively, and no type-safety casting funniness)
- * correctly maintained ownership of the UniquePtr guarantees no leaks are
- * possible. (This pays off best if a class is only ever created through a
- * factory method on the class, using a private constructor.)
- *
- * Second, initializing a UniquePtr using a |new| expression requires repeating
- * the name of the new'd type, whereas MakeUnique in concert with the |auto|
- * keyword names it only once:
- *
- * UniquePtr<char> ptr1(new char()); // repetitive
- * auto ptr2 = MakeUnique<char>(); // shorter
- *
- * Of course this assumes the reader understands the operation MakeUnique
- * performs. In the long run this is probably a reasonable assumption. In the
- * short run you'll have to use your judgment about what readers can be expected
- * to know, or to quickly look up.
- *
- * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
- * contrast you can't assign a pointer into a UniquePtr without using the
- * cumbersome reset().
- *
- * UniquePtr<char> p;
- * p = new char; // ERROR
- * p.reset(new char); // works, but ugly
- * p = MakeUnique<char>(); // preferred
- *
- * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
- * An exception thrown after |new T| succeeds will leak that memory, unless the
- * pointer is assigned to an object that will manage its ownership. UniquePtr
- * ably serves this function.)
- */
-
-template<typename T, typename... Args>
-typename detail::UniqueSelector<T>::SingleObject
-MakeUnique(Args&&... aArgs)
-{
- return UniquePtr<T>(new T(Forward<Args>(aArgs)...));
-}
-
-template<typename T>
-typename detail::UniqueSelector<T>::UnknownBound
-MakeUnique(decltype(sizeof(int)) aN)
-{
- typedef typename RemoveExtent<T>::Type ArrayType;
- return UniquePtr<T>(new ArrayType[aN]());
-}
-
-template<typename T, typename... Args>
-typename detail::UniqueSelector<T>::KnownBound
-MakeUnique(Args&&... aArgs) = delete;
-
-} // namespace mozilla
-
-#endif /* mozilla_UniquePtr_h */