diff options
Diffstat (limited to 'tools/source/generic/fract.cxx')
-rw-r--r-- | tools/source/generic/fract.cxx | 167 |
1 files changed, 111 insertions, 56 deletions
diff --git a/tools/source/generic/fract.cxx b/tools/source/generic/fract.cxx index 040d6f15ce06..8222a5882096 100644 --- a/tools/source/generic/fract.cxx +++ b/tools/source/generic/fract.cxx @@ -4,9 +4,9 @@ * * $RCSfile: fract.cxx,v $ * - * $Revision: 1.7 $ + * $Revision: 1.8 $ * - * last change: $Author: hr $ $Date: 2007-06-27 22:13:27 $ + * last change: $Author: rt $ $Date: 2007-07-03 12:32:17 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. @@ -513,76 +513,131 @@ Fraction& Fraction::operator /= ( const Fraction& rVal ) |* |* Beschreibung FRACT.SDW |* Ersterstellung JOE 17.09.95 -|* Letzte Aenderung JOE 17.09.95 +|* Letzte Aenderung kendy 2007-06-13 |* *************************************************************************/ -// Funktioniert z.Zt. nur fuer 32-Bit Werte !!! -// Fehlerbehaftetes Kuerzen einer Fraction. -// nSignificantBits gibt an, wieviele signifikante Binaerstellen -// in Zaehler/Nenner mindestens erhalten bleiben sollen. -// Beispiel: ReduceInaccurate(8) hat einen Fehler <1% [1/2^(8-1)] -// dabei tritt der groesste Fehler bei folgendem Wertepaar auf: -// Binaer 1000000011111111111111111111111b/1000000000000000000000000000000b -// = 1082130431/1073741824 -// = ca. 1.007812499 -// Nach ReduceInaccurate( 8 ) wird daraus 1/1. -void Fraction::ReduceInaccurate( unsigned nSignificantBits ) +// Similar to clz_table that can be googled +const char nbits_table[32] = { - if ( !nNumerator || !nDenominator ) - return; + 32, 1, 23, 2, 29, 24, 14, 3, + 30, 27, 25, 18, 20, 15, 10, 4, + 31, 22, 28, 13, 26, 17, 19, 9, + 21, 12, 16, 8, 11, 7, 6, 5 +}; - // Zaehler und Nenner auf den Stack fuer schnelleren Zugriff - unsigned long nMul; - unsigned long nDiv; - BOOL bNeg; - if ( nNumerator >= 0 ) +static int impl_NumberOfBits( unsigned long nNum ) +{ + // http://en.wikipedia.org/wiki/De_Bruijn_sequence + // + // background paper: Using de Bruijn Sequences to Index a 1 in a + // Computer Word (1998) Charles E. Leiserson, + // Harald Prokop, Keith H. Randall + // (e.g. http://citeseer.ist.psu.edu/leiserson98using.html) + const sal_uInt32 nDeBruijn = 0x7DCD629; + + if ( nNum == 0 ) + return 0; + + // Get it to form like 0000001111111111b + nNum |= ( nNum >> 1 ); + nNum |= ( nNum >> 2 ); + nNum |= ( nNum >> 4 ); + nNum |= ( nNum >> 8 ); + nNum |= ( nNum >> 16 ); + + sal_uInt32 nNumber; + int nBonus = 0; + +#if SAL_TYPES_SIZEOFLONG == 4 + nNumber = nNum; +#elif SAL_TYPES_SIZEOFLONG == 8 + nNum |= ( nNum >> 32 ); + + if ( nNum & 0x80000000 ) { - nMul = (unsigned long)nNumerator; - bNeg = FALSE; + nNumber = sal_uInt32( nNum >> 32 ); + nBonus = 32; + + if ( nNumber == 0 ) + return 32; } else - { - nMul = (unsigned long)(-nNumerator); - bNeg = TRUE; - } - nDiv=(unsigned long)nDenominator; - - unsigned long a=nMul; unsigned nMulZ=0; // Fuehrende Nullen zaehlen - while (a<0x00800000) { nMulZ+=8; a<<=8; } - while (a<0x80000000) { nMulZ++; a<<=1; } - a=nDiv; unsigned nDivZ=0; // Fuehrende Nullen zaehlen - while (a<0x00800000) { nDivZ+=8; a<<=8; } - while (a<0x80000000) { nDivZ++; a<<=1; } - // Anzahl der verwendeten Digits bestimmen - // Auch hier gehe ich davon aus, dass es sich um 32Bit-Werte handelt - int nMulDigits=(sizeof(long) * 8)-nMulZ; - int nDivDigits=(sizeof(long) * 8)-nDivZ; - // Nun bestimmen, wieviele Stellen hinten weg koennen - // Hier koennte man das Ergebnis noch etwas optimieren... - int nMulWeg=nMulDigits-nSignificantBits; if (nMulWeg<0) nMulWeg=0; - int nDivWeg=nDivDigits-nSignificantBits; if (nDivWeg<0) nDivWeg=0; - int nWeg=Min(nMulWeg,nDivWeg); - nMul>>=nWeg; - nDiv>>=nWeg; + nNumber = sal_uInt32( nNum & 0xFFFFFFFF ); +#else +#error "Unknown size of long!" +#endif + + // De facto shift left of nDeBruijn using multiplication (nNumber + // is all ones from topmost bit, thus nDeBruijn + (nDeBruijn * + // nNumber) => nDeBruijn * (nNumber+1) clears all those bits to + // zero, sets the next bit to one, and thus effectively shift-left + // nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit + // sequence in the msb for each distinct position of the last + // leading 0 bit - that's the property of a de Bruijn number. + nNumber = nDeBruijn + ( nDeBruijn * nNumber ); + + // 5-bit window indexes the result + return ( nbits_table[nNumber >> 27] ) + nBonus; +} + +/** Inaccurate cancellation for a fraction. + + Clip both nominator and denominator to said number of bits. If + either of those already have equal or less number of bits used, + this method does nothing. + + @param nSignificantBits denotes, how many significant binary + digits to maintain, in both nominator and denominator. + + @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the + largest error occurs with the following pair of values: + + binary 1000000011111111111111111111111b/1000000000000000000000000000000b + = 1082130431/1073741824 + = approx. 1.007812499 + + A ReduceInaccurate(8) yields 1/1. +*/ +void Fraction::ReduceInaccurate( unsigned nSignificantBits ) +{ + if ( !nNumerator || !nDenominator ) + return; + + // Count with unsigned longs only + const bool bNeg = ( nNumerator < 0 ); + unsigned long nMul = (unsigned long)( bNeg? -nNumerator: nNumerator ); + unsigned long nDiv = (unsigned long)( nDenominator ); + + DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!"); + + // How much bits can we lose? + const int nMulBitsToLose = Max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 ); + const int nDivBitsToLose = Max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 ); + + const int nToLose = Min( nMulBitsToLose, nDivBitsToLose ); + + // Remove the bits + nMul >>= nToLose; + nDiv >>= nToLose; + if ( !nMul || !nDiv ) { - DBG_ERROR( "Oups, beim kuerzen einer Fraction hat sich Joe verrechnet." ); + // Return without reduction + DBG_ERROR( "Oops, we reduced too much..." ); return; } - // Nun noch kuerzen ueber GGT - long n1=GetGGT( nMul, nDiv ); - if ( n1!=1 ) + // Reduce + long n1 = GetGGT( nMul, nDiv ); + if ( n1 != 1 ) { - nMul/=n1; - nDiv/=n1; + nMul /= n1; + nDiv /= n1; } - if ( !bNeg ) - nNumerator = (long)nMul; - else - nNumerator = -(long)nMul; + + nNumerator = bNeg? -long( nMul ): long( nMul ); nDenominator = nDiv; } |