/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include // #i37443# #define FACTOR_FOR_UNSHARPEN (1.6) #ifdef DBG_UTIL static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN; #endif namespace basegfx { namespace { void ImpSubDivAngle( const B2DPoint& rfPA, // start point const B2DPoint& rfEA, // edge on A const B2DPoint& rfEB, // edge on B const B2DPoint& rfPB, // end point B2DPolygon& rTarget, // target polygon double fAngleBound, // angle bound in [0.0 .. 2PI] bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions sal_uInt16 nMaxRecursionDepth) // endless loop protection { if(nMaxRecursionDepth) { // do angle test B2DVector aLeft(rfEA - rfPA); B2DVector aRight(rfEB - rfPB); // #i72104# if(aLeft.equalZero()) { aLeft = rfEB - rfPA; } if(aRight.equalZero()) { aRight = rfEA - rfPB; } const double fCurrentAngle(aLeft.angle(aRight)); if(fabs(fCurrentAngle) > (F_PI - fAngleBound)) { // end recursion nMaxRecursionDepth = 0; } else { if(bAllowUnsharpen) { // #i37443# unsharpen criteria #ifdef DBG_UTIL fAngleBound *= fMultFactUnsharpen; #else fAngleBound *= FACTOR_FOR_UNSHARPEN; #endif } } } if(nMaxRecursionDepth) { // divide at 0.5 const B2DPoint aS1L(average(rfPA, rfEA)); const B2DPoint aS1C(average(rfEA, rfEB)); const B2DPoint aS1R(average(rfEB, rfPB)); const B2DPoint aS2L(average(aS1L, aS1C)); const B2DPoint aS2R(average(aS1C, aS1R)); const B2DPoint aS3C(average(aS2L, aS2R)); // left recursion ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); // right recursion ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); } else { rTarget.append(rfPB); } } void ImpSubDivAngleStart( const B2DPoint& rfPA, // start point const B2DPoint& rfEA, // edge on A const B2DPoint& rfEB, // edge on B const B2DPoint& rfPB, // end point B2DPolygon& rTarget, // target polygon const double& rfAngleBound, // angle bound in [0.0 .. 2PI] bool bAllowUnsharpen) // #i37443# allow the criteria to get unsharp in recursions { sal_uInt16 nMaxRecursionDepth(8); const B2DVector aLeft(rfEA - rfPA); const B2DVector aRight(rfEB - rfPB); bool bLeftEqualZero(aLeft.equalZero()); bool bRightEqualZero(aRight.equalZero()); bool bAllParallel(false); if(bLeftEqualZero && bRightEqualZero) { nMaxRecursionDepth = 0; } else { const B2DVector aBase(rfPB - rfPA); const bool bBaseEqualZero(aBase.equalZero()); // #i72104# if(!bBaseEqualZero) { const bool bLeftParallel(bLeftEqualZero || areParallel(aLeft, aBase)); const bool bRightParallel(bRightEqualZero || areParallel(aRight, aBase)); if(bLeftParallel && bRightParallel) { bAllParallel = true; if(!bLeftEqualZero) { double fFactor; if(fabs(aBase.getX()) > fabs(aBase.getY())) { fFactor = aLeft.getX() / aBase.getX(); } else { fFactor = aLeft.getY() / aBase.getY(); } if(fFactor >= 0.0 && fFactor <= 1.0) { bLeftEqualZero = true; } } if(!bRightEqualZero) { double fFactor; if(fabs(aBase.getX()) > fabs(aBase.getY())) { fFactor = aRight.getX() / -aBase.getX(); } else { fFactor = aRight.getY() / -aBase.getY(); } if(fFactor >= 0.0 && fFactor <= 1.0) { bRightEqualZero = true; } } if(bLeftEqualZero && bRightEqualZero) { nMaxRecursionDepth = 0; } } } } if(nMaxRecursionDepth) { // divide at 0.5 ad test both edges for angle criteria const B2DPoint aS1L(average(rfPA, rfEA)); const B2DPoint aS1C(average(rfEA, rfEB)); const B2DPoint aS1R(average(rfEB, rfPB)); const B2DPoint aS2L(average(aS1L, aS1C)); const B2DPoint aS2R(average(aS1C, aS1R)); const B2DPoint aS3C(average(aS2L, aS2R)); // test left bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero); if(!bAngleIsSmallerLeft) { const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104# const B2DVector aRightLeft(aS2L - aS3C); const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft)); bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound)); } // test right bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero); if(!bAngleIsSmallerRight) { const B2DVector aLeftRight(aS2R - aS3C); const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104# const double fCurrentAngleRight(aLeftRight.angle(aRightRight)); bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound)); } if(bAngleIsSmallerLeft && bAngleIsSmallerRight) { // no recursion necessary at all nMaxRecursionDepth = 0; } else { // left if(bAngleIsSmallerLeft) { rTarget.append(aS3C); } else { ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth); } // right if(bAngleIsSmallerRight) { rTarget.append(rfPB); } else { ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth); } } } if(!nMaxRecursionDepth) { rTarget.append(rfPB); } } void ImpSubDivDistance( const B2DPoint& rfPA, // start point const B2DPoint& rfEA, // edge on A const B2DPoint& rfEB, // edge on B const B2DPoint& rfPB, // end point B2DPolygon& rTarget, // target polygon double fDistanceBound2, // quadratic distance criteria double fLastDistanceError2, // the last quadratic distance error sal_uInt16 nMaxRecursionDepth) // endless loop protection { if(nMaxRecursionDepth) { // decide if another recursion is needed. If not, set // nMaxRecursionDepth to zero // Perform bezier flatness test (lecture notes from R. Schaback, // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| // 0<=j<=n // What is calculated here is an upper bound to the distance from // a line through b_0 and b_3 (rfPA and P4 in our notation) and the // curve. We can drop 0 and n from the running indices, since the // argument of max becomes zero for those cases. const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX())); const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY())); const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX())); const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY())); const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y)); // stop if error measure does not improve anymore. This is a // safety guard against floating point inaccuracies. // stop if distance from line is guaranteed to be bounded by d const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2); if(bFurtherDivision) { // remember last error value fLastDistanceError2 = fDistanceError2; } else { // stop recursion nMaxRecursionDepth = 0; } } if(nMaxRecursionDepth) { // divide at 0.5 const B2DPoint aS1L(average(rfPA, rfEA)); const B2DPoint aS1C(average(rfEA, rfEB)); const B2DPoint aS1R(average(rfEB, rfPB)); const B2DPoint aS2L(average(aS1L, aS1C)); const B2DPoint aS2R(average(aS1C, aS1R)); const B2DPoint aS3C(average(aS2L, aS2R)); // left recursion ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); // right recursion ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); } else { rTarget.append(rfPB); } } } // end of anonymous namespace } // end of namespace basegfx namespace basegfx { B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier) : maStartPoint(rBezier.maStartPoint), maEndPoint(rBezier.maEndPoint), maControlPointA(rBezier.maControlPointA), maControlPointB(rBezier.maControlPointB) { } B2DCubicBezier::B2DCubicBezier() { } B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd) : maStartPoint(rStart), maEndPoint(rEnd), maControlPointA(rControlPointA), maControlPointB(rControlPointB) { } B2DCubicBezier::~B2DCubicBezier() { } // assignment operator B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier) { maStartPoint = rBezier.maStartPoint; maEndPoint = rBezier.maEndPoint; maControlPointA = rBezier.maControlPointA; maControlPointB = rBezier.maControlPointB; return *this; } // compare operators bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const { return ( maStartPoint == rBezier.maStartPoint && maEndPoint == rBezier.maEndPoint && maControlPointA == rBezier.maControlPointA && maControlPointB == rBezier.maControlPointB ); } bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const { return ( maStartPoint != rBezier.maStartPoint || maEndPoint != rBezier.maEndPoint || maControlPointA != rBezier.maControlPointA || maControlPointB != rBezier.maControlPointB ); } bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const { return ( maStartPoint.equal(rBezier.maStartPoint) && maEndPoint.equal(rBezier.maEndPoint) && maControlPointA.equal(rBezier.maControlPointA) && maControlPointB.equal(rBezier.maControlPointB) ); } // test if vectors are used bool B2DCubicBezier::isBezier() const { if(maControlPointA != maStartPoint || maControlPointB != maEndPoint) { return true; } return false; } void B2DCubicBezier::testAndSolveTrivialBezier() { if(maControlPointA != maStartPoint || maControlPointB != maEndPoint) { const B2DVector aEdge(maEndPoint - maStartPoint); // controls parallel to edge can be trivial. No edge -> not parallel -> control can // still not be trivial (e.g. ballon loop) if(!aEdge.equalZero()) { // get control vectors const B2DVector aVecA(maControlPointA - maStartPoint); const B2DVector aVecB(maControlPointB - maEndPoint); // check if trivial per se bool bAIsTrivial(aVecA.equalZero()); bool bBIsTrivial(aVecB.equalZero()); // #i102241# prepare inverse edge length to normalize cross values; // else the small compare value used in fTools::equalZero // will be length dependent and this detection will work as less // precise as longer the edge is. In principle, the length of the control // vector would need to be used too, but to be trivial it is assumed to // be of roughly equal length to the edge, so edge length can be used // for both. Only needed when one of both is not trivial per se. const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial ? 1.0 : 1.0 / aEdge.getLength()); // if A is not zero, check if it could be if(!bAIsTrivial) { // #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what // we need here with the precision we need const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength); if(fTools::equalZero(fCross)) { // get scale to edge. Use bigger distance for numeric quality const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) ? aVecA.getX() / aEdge.getX() : aVecA.getY() / aEdge.getY()); // relative end point of vector in edge range? if (fTools::betweenOrEqualEither(fScale, 0.0, 1.0)) { bAIsTrivial = true; } } } // if B is not zero, check if it could be, but only if A is already trivial; // else solve to trivial will not be possible for whole edge if(bAIsTrivial && !bBIsTrivial) { // parallel to edge? Check aVecB, aEdge const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength); if(fTools::equalZero(fCross)) { // get scale to edge. Use bigger distance for numeric quality const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) ? aVecB.getX() / aEdge.getX() : aVecB.getY() / aEdge.getY()); // end point of vector in edge range? Caution: controlB is directed AGAINST edge if (fTools::betweenOrEqualEither(fScale, -1.0, 0.0)) { bBIsTrivial = true; } } } // if both are/can be reduced, do it. // Not possible if only one is/can be reduced (!) if(bAIsTrivial && bBIsTrivial) { maControlPointA = maStartPoint; maControlPointB = maEndPoint; } } } } namespace { double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch) { const double fEdgeLength(rEdge.getEdgeLength()); const double fControlPolygonLength(rEdge.getControlPolygonLength()); const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength)); if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation)) { return (fEdgeLength + fControlPolygonLength) * 0.5; } else { B2DCubicBezier aLeft, aRight; const double fNewDeviation(fDeviation * 0.5); const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1); rEdge.split(0.5, &aLeft, &aRight); return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch) + impGetLength(aRight, fNewDeviation, nNewRecursionWatch); } } } double B2DCubicBezier::getLength(double fDeviation) const { if(isBezier()) { if(fDeviation < 0.00000001) { fDeviation = 0.00000001; } return impGetLength(*this, fDeviation, 6); } else { return B2DVector(getEndPoint() - getStartPoint()).getLength(); } } double B2DCubicBezier::getEdgeLength() const { const B2DVector aEdge(maEndPoint - maStartPoint); return aEdge.getLength(); } double B2DCubicBezier::getControlPolygonLength() const { const B2DVector aVectorA(maControlPointA - maStartPoint); const B2DVector aVectorB(maEndPoint - maControlPointB); if(!aVectorA.equalZero() || !aVectorB.equalZero()) { const B2DVector aTop(maControlPointB - maControlPointA); return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength()); } else { return getEdgeLength(); } } void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound) const { if(isBezier()) { // use support method #i37443# and allow unsharpen the criteria ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, true/*bAllowUnsharpen*/); } else { rTarget.append(getEndPoint()); } } B2DVector B2DCubicBezier::getTangent(double t) const { if(fTools::lessOrEqual(t, 0.0)) { // tangent in start point B2DVector aTangent(getControlPointA() - getStartPoint()); if(!aTangent.equalZero()) { return aTangent; } // start point and control vector are the same, fallback // to implicit start vector to control point B aTangent = (getControlPointB() - getStartPoint()) * 0.3; if(!aTangent.equalZero()) { return aTangent; } // not a bezier at all, return edge vector return (getEndPoint() - getStartPoint()) * 0.3; } else if(fTools::moreOrEqual(t, 1.0)) { // tangent in end point B2DVector aTangent(getEndPoint() - getControlPointB()); if(!aTangent.equalZero()) { return aTangent; } // end point and control vector are the same, fallback // to implicit start vector from control point A aTangent = (getEndPoint() - getControlPointA()) * 0.3; if(!aTangent.equalZero()) { return aTangent; } // not a bezier at all, return edge vector return (getEndPoint() - getStartPoint()) * 0.3; } else { // t is in ]0.0 .. 1.0[. Split and extract B2DCubicBezier aRight; split(t, nullptr, &aRight); return aRight.getControlPointA() - aRight.getStartPoint(); } } // #i37443# adaptive subdivide by nCount subdivisions void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const { const double fLenFact(1.0 / static_cast< double >(nCount + 1)); for(sal_uInt32 a(1); a <= nCount; a++) { const double fPos(static_cast< double >(a) * fLenFact); rTarget.append(interpolatePoint(fPos)); } rTarget.append(getEndPoint()); } // adaptive subdivide by distance void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const { if(isBezier()) { ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fDistanceBound * fDistanceBound, ::std::numeric_limits::max(), 30); } else { rTarget.append(getEndPoint()); } } B2DPoint B2DCubicBezier::interpolatePoint(double t) const { OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)"); if(isBezier()) { const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); return interpolate(aS2L, aS2R, t); } else { return interpolate(maStartPoint, maEndPoint, t); } } double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const { const sal_uInt32 nInitialDivisions(3); B2DPolygon aInitialPolygon; // as start make a fix division, creates nInitialDivisions + 2L points aInitialPolygon.append(getStartPoint()); adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions); // now look for the closest point const sal_uInt32 nPointCount(aInitialPolygon.count()); B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0)); double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY()); double fNewQuadDist; sal_uInt32 nSmallestIndex(0); for(sal_uInt32 a(1); a < nPointCount; a++) { aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a)); fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); if(fNewQuadDist < fQuadDist) { fQuadDist = fNewQuadDist; nSmallestIndex = a; } } // look right and left for even smaller distances double fStepValue(1.0 / (double)((nPointCount - 1) * 2)); // half the edge step width double fPosition((double)nSmallestIndex / (double)(nPointCount - 1)); bool bDone(false); while(!bDone) { if(!bDone) { // test left double fPosLeft(fPosition - fStepValue); if(fPosLeft < 0.0) { fPosLeft = 0.0; aVector = B2DVector(rTestPoint - maStartPoint); } else { aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft)); } fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); if(fTools::less(fNewQuadDist, fQuadDist)) { fQuadDist = fNewQuadDist; fPosition = fPosLeft; } else { // test right double fPosRight(fPosition + fStepValue); if(fPosRight > 1.0) { fPosRight = 1.0; aVector = B2DVector(rTestPoint - maEndPoint); } else { aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight)); } fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); if(fTools::less(fNewQuadDist, fQuadDist)) { fQuadDist = fNewQuadDist; fPosition = fPosRight; } else { // not less left or right, done bDone = true; } } } if(0.0 == fPosition || 1.0 == fPosition) { // if we are completely left or right, we are done bDone = true; } if(!bDone) { // prepare next step value fStepValue /= 2.0; } } rCut = fPosition; return sqrt(fQuadDist); } void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const { OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)"); if(!pBezierA && !pBezierB) { return; } if(isBezier()) { const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); const B2DPoint aS3C(interpolate(aS2L, aS2R, t)); if(pBezierA) { pBezierA->setStartPoint(maStartPoint); pBezierA->setEndPoint(aS3C); pBezierA->setControlPointA(aS1L); pBezierA->setControlPointB(aS2L); } if(pBezierB) { pBezierB->setStartPoint(aS3C); pBezierB->setEndPoint(maEndPoint); pBezierB->setControlPointA(aS2R); pBezierB->setControlPointB(aS1R); } } else { const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t)); if(pBezierA) { pBezierA->setStartPoint(maStartPoint); pBezierA->setEndPoint(aSplit); pBezierA->setControlPointA(maStartPoint); pBezierA->setControlPointB(aSplit); } if(pBezierB) { pBezierB->setStartPoint(aSplit); pBezierB->setEndPoint(maEndPoint); pBezierB->setControlPointA(aSplit); pBezierB->setControlPointB(maEndPoint); } } } B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const { B2DCubicBezier aRetval; if(fTools::more(fStart, 1.0)) { fStart = 1.0; } else if(fTools::less(fStart, 0.0)) { fStart = 0.0; } if(fTools::more(fEnd, 1.0)) { fEnd = 1.0; } else if(fTools::less(fEnd, 0.0)) { fEnd = 0.0; } if(fEnd <= fStart) { // empty or NULL, create single point at center const double fSplit((fEnd + fStart) * 0.5); const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit)); aRetval.setStartPoint(aPoint); aRetval.setEndPoint(aPoint); aRetval.setControlPointA(aPoint); aRetval.setControlPointB(aPoint); } else { if(isBezier()) { // copy bezier; cut off right, then cut off left. Do not forget to // adapt cut value when both cuts happen const bool bEndIsOne(fTools::equal(fEnd, 1.0)); const bool bStartIsZero(fTools::equalZero(fStart)); aRetval = *this; if(!bEndIsOne) { aRetval.split(fEnd, &aRetval, nullptr); if(!bStartIsZero) { fStart /= fEnd; } } if(!bStartIsZero) { aRetval.split(fStart, nullptr, &aRetval); } } else { // no bezier, create simple edge const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart)); const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd)); aRetval.setStartPoint(aPointA); aRetval.setEndPoint(aPointB); aRetval.setControlPointA(aPointA); aRetval.setControlPointB(aPointB); } } return aRetval; } B2DRange B2DCubicBezier::getRange() const { B2DRange aRetval(maStartPoint, maEndPoint); aRetval.expand(maControlPointA); aRetval.expand(maControlPointB); return aRetval; } bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const { ::std::vector< double > aAllResults; aAllResults.reserve(4); getAllExtremumPositions(aAllResults); const sal_uInt32 nCount(aAllResults.size()); if(!nCount) { return false; } else if(1 == nCount) { rfResult = aAllResults[0]; return true; } else { rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end())); return true; } } namespace { inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult) { // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly // by using the equalZero test, NOT ::more or ::less which will use the // ApproxEqual() which is too exact here if(fCandidate > 0.0 && !fTools::equalZero(fCandidate)) { if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0)) { rResult.push_back(fCandidate); } } } } void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const { rResults.clear(); // calculate the x-extrema parameters by zeroing first x-derivative // of the cubic bezier's parametric formula, which results in a // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX const B2DPoint aControlDiff( maControlPointA - maControlPointB ); double fCX = maControlPointA.getX() - maStartPoint.getX(); const double fBX = fCX + aControlDiff.getX(); const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX()); if(fTools::equalZero(fCX)) { // detect fCX equal zero and truncate to real zero value in that case fCX = 0.0; } if( !fTools::equalZero(fAX) ) { // derivative is polynomial of order 2 => use binomial formula const double fD = fBX*fBX - fAX*fCX; if( fD >= 0.0 ) { const double fS = sqrt(fD); // calculate both roots (avoiding a numerically unstable subtraction) const double fQ = fBX + ((fBX >= 0) ? +fS : -fS); impCheckExtremumResult(fQ / fAX, rResults); if( !fTools::equalZero(fS) ) // ignore root multiplicity impCheckExtremumResult(fCX / fQ, rResults); } } else if( !fTools::equalZero(fBX) ) { // derivative is polynomial of order 1 => one extrema impCheckExtremumResult(fCX / (2 * fBX), rResults); } // calculate the y-extrema parameters by zeroing first y-derivative double fCY = maControlPointA.getY() - maStartPoint.getY(); const double fBY = fCY + aControlDiff.getY(); const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY()); if(fTools::equalZero(fCY)) { // detect fCY equal zero and truncate to real zero value in that case fCY = 0.0; } if( !fTools::equalZero(fAY) ) { // derivative is polynomial of order 2 => use binomial formula const double fD = fBY*fBY - fAY*fCY; if( fD >= 0.0 ) { const double fS = sqrt(fD); // calculate both roots (avoiding a numerically unstable subtraction) const double fQ = fBY + ((fBY >= 0) ? +fS : -fS); impCheckExtremumResult(fQ / fAY, rResults); if( !fTools::equalZero(fS) ) // ignore root multiplicity impCheckExtremumResult(fCY / fQ, rResults); } } else if( !fTools::equalZero(fBY) ) { // derivative is polynomial of order 1 => one extrema impCheckExtremumResult(fCY / (2 * fBY), rResults); } } void B2DCubicBezier::transform(const basegfx::B2DHomMatrix& rMatrix) { if(!rMatrix.isIdentity()) { if(maControlPointA == maStartPoint) { maControlPointA = maStartPoint = rMatrix * maStartPoint; } else { maStartPoint *= rMatrix; maControlPointA *= rMatrix; } if(maControlPointB == maEndPoint) { maControlPointB = maEndPoint = rMatrix * maEndPoint; } else { maEndPoint *= rMatrix; maControlPointB *= rMatrix; } } } void B2DCubicBezier::fround() { if(maControlPointA == maStartPoint) { maControlPointA = maStartPoint = basegfx::B2DPoint( basegfx::fround(maStartPoint.getX()), basegfx::fround(maStartPoint.getY())); } else { maStartPoint = basegfx::B2DPoint( basegfx::fround(maStartPoint.getX()), basegfx::fround(maStartPoint.getY())); maControlPointA = basegfx::B2DPoint( basegfx::fround(maControlPointA.getX()), basegfx::fround(maControlPointA.getY())); } if(maControlPointB == maEndPoint) { maControlPointB = maEndPoint = basegfx::B2DPoint( basegfx::fround(maEndPoint.getX()), basegfx::fround(maEndPoint.getY())); } else { maEndPoint = basegfx::B2DPoint( basegfx::fround(maEndPoint.getX()), basegfx::fround(maEndPoint.getY())); maControlPointB = basegfx::B2DPoint( basegfx::fround(maControlPointB.getX()), basegfx::fround(maControlPointB.getY())); } } } // end of namespace basegfx /* vim:set shiftwidth=4 softtabstop=4 expandtab: */