/************************************************************************* * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: b2dhommatrix.cxx,v $ * * $Revision: 1.11 $ * * last change: $Author: kz $ $Date: 2005-11-02 13:56:26 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. * * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2005 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ************************************************************************/ #ifndef _OSL_DIAGNOSE_H_ #include #endif #ifndef _BGFX_MATRIX_B2DHOMMATRIX_HXX #include #endif #ifndef _HOMMATRIX_TEMPLATE_HXX #include #endif #ifndef _BGFX_MATRIX_B3DHOMMATRIX_HXX #include #endif #ifndef _BGFX_TUPLE_B3DTUPLE_HXX #include #endif #ifndef _BGFX_TUPLE_B2DTUPLE_HXX #include #endif #ifndef _BGFX_VECTOR_B2DVECTOR_HXX #include #endif namespace basegfx { class Impl2DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 3 > { }; static Impl2DHomMatrix& get2DIdentityMatrix() { static Impl2DHomMatrix maStatic2DIdentityHomMatrix; return maStatic2DIdentityHomMatrix; } void B2DHomMatrix::implPrepareChange() { if(mpM->getRefCount()) { mpM->decRefCount(); mpM = new Impl2DHomMatrix(*mpM); } } B2DHomMatrix::B2DHomMatrix() : mpM(&get2DIdentityMatrix()) { mpM->incRefCount(); } B2DHomMatrix::B2DHomMatrix(const B2DHomMatrix& rMat) : mpM(rMat.mpM) { mpM->incRefCount(); } B2DHomMatrix::~B2DHomMatrix() { if(mpM->getRefCount()) mpM->decRefCount(); else delete mpM; } B2DHomMatrix& B2DHomMatrix::operator=(const B2DHomMatrix& rMat) { if(mpM->getRefCount()) mpM->decRefCount(); else delete mpM; mpM = rMat.mpM; mpM->incRefCount(); return *this; } double B2DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const { return mpM->get(nRow, nColumn); } void B2DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue) { implPrepareChange(); mpM->set(nRow, nColumn, fValue); } bool B2DHomMatrix::isLastLineDefault() const { return mpM->isLastLineDefault(); } bool B2DHomMatrix::isIdentity() const { if(mpM == &get2DIdentityMatrix()) return true; return mpM->isIdentity(); } void B2DHomMatrix::identity() { if(mpM->getRefCount()) mpM->decRefCount(); else delete mpM; mpM = &get2DIdentityMatrix(); mpM->incRefCount(); } bool B2DHomMatrix::isInvertible() const { return mpM->isInvertible(); } bool B2DHomMatrix::invert() { Impl2DHomMatrix aWork(*mpM); sal_uInt16* pIndex = new sal_uInt16[mpM->getEdgeLength()]; sal_Int16 nParity; if(aWork.ludcmp(pIndex, nParity)) { implPrepareChange(); mpM->doInvert(aWork, pIndex); delete[] pIndex; return true; } delete[] pIndex; return false; } bool B2DHomMatrix::isNormalized() const { return mpM->isNormalized(); } void B2DHomMatrix::normalize() { if(!mpM->isNormalized()) { implPrepareChange(); mpM->doNormalize(); } } double B2DHomMatrix::determinant() const { return mpM->doDeterminant(); } double B2DHomMatrix::trace() const { return mpM->doTrace(); } void B2DHomMatrix::transpose() { implPrepareChange(); mpM->doTranspose(); } B2DHomMatrix& B2DHomMatrix::operator+=(const B2DHomMatrix& rMat) { implPrepareChange(); mpM->doAddMatrix(*rMat.mpM); return *this; } B2DHomMatrix& B2DHomMatrix::operator-=(const B2DHomMatrix& rMat) { implPrepareChange(); mpM->doSubMatrix(*rMat.mpM); return *this; } B2DHomMatrix& B2DHomMatrix::operator*=(double fValue) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fValue)) { implPrepareChange(); mpM->doMulMatrix(fValue); } return *this; } B2DHomMatrix& B2DHomMatrix::operator/=(double fValue) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fValue)) { implPrepareChange(); mpM->doMulMatrix(1.0 / fValue); } return *this; } B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat) { if(!rMat.isIdentity()) { implPrepareChange(); mpM->doMulMatrix(*rMat.mpM); } return *this; } bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const { if(mpM == rMat.mpM) return true; return mpM->isEqual(*rMat.mpM); } bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const { if(mpM == rMat.mpM) return false; return !mpM->isEqual(*rMat.mpM); } void B2DHomMatrix::rotate(double fRadiant) { if(!::basegfx::fTools::equalZero(fRadiant)) { double fSin; double fCos; // is the rotation angle an approximate multiple of pi/2? // If yes, force fSin/fCos to -1/0/1, to maintain // orthogonality (which might also be advantageous for the // other cases, but: for multiples of pi/2, the exact // values _can_ be attained. It would be largely // unintuitive, if a 180 degrees rotation would introduce // slight roundoff errors, instead of exactly mirroring // the coordinate system). if( fTools::equalZero( fmod( fRadiant, F_PI2 ) ) ) { // determine quadrant const sal_Int32 nQuad( (4 + fround( 4/F_2PI*fmod( fRadiant, F_2PI ) )) % 4 ); switch( nQuad ) { case 0: // -2pi,0,2pi fSin = 0.0; fCos = 1.0; break; case 1: // -3/2pi,1/2pi fSin = 1.0; fCos = 0.0; break; case 2: // -pi,pi fSin = 0.0; fCos = -1.0; break; case 3: // -1/2pi,3/2pi fSin = -1.0; fCos = 0.0; break; default: OSL_ENSURE( false, "B2DHomMatrix::rotate(): Impossible case reached" ); } } else { // TODO(P1): Maybe use glibc's sincos here (though // that's kinda non-portable...) fSin = sin(fRadiant); fCos = cos(fRadiant); } Impl2DHomMatrix aRotMat(get2DIdentityMatrix()); aRotMat.set(0, 0, fCos); aRotMat.set(1, 1, fCos); aRotMat.set(1, 0, fSin); aRotMat.set(0, 1, -fSin); implPrepareChange(); mpM->doMulMatrix(aRotMat); } } void B2DHomMatrix::translate(double fX, double fY) { if(!::basegfx::fTools::equalZero(fX) || !::basegfx::fTools::equalZero(fY)) { Impl2DHomMatrix aTransMat(get2DIdentityMatrix()); aTransMat.set(0, 2, fX); aTransMat.set(1, 2, fY); implPrepareChange(); mpM->doMulMatrix(aTransMat); } } void B2DHomMatrix::scale(double fX, double fY) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fX) || !::basegfx::fTools::equal(fOne, fY)) { Impl2DHomMatrix aScaleMat(get2DIdentityMatrix()); aScaleMat.set(0, 0, fX); aScaleMat.set(1, 1, fY); implPrepareChange(); mpM->doMulMatrix(aScaleMat); } } void B2DHomMatrix::shearX(double fSx) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fSx)) { Impl2DHomMatrix aShearXMat(get2DIdentityMatrix()); aShearXMat.set(0, 1, fSx); implPrepareChange(); mpM->doMulMatrix(aShearXMat); } } void B2DHomMatrix::shearY(double fSy) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fSy)) { Impl2DHomMatrix aShearYMat(get2DIdentityMatrix()); aShearYMat.set(1, 0, fSy); implPrepareChange(); mpM->doMulMatrix(aShearYMat); } } // Decomposition bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const { // when perspective is used, decompose is not made here if(!mpM->isLastLineDefault()) return false; // test for rotation and shear if(::basegfx::fTools::equalZero(get(0, 1)) && ::basegfx::fTools::equalZero(get(1, 0))) { // no rotation and shear, direct value extraction rRotate = rShearX = 0.0; // copy scale values rScale.setX(get(0, 0)); rScale.setY(get(1, 1)); // copy translation values rTranslate.setX(get(0, 2)); rTranslate.setY(get(1, 2)); return true; } else { // test if shear is zero. That's the case, if the unit vectors in the matrix // are perpendicular -> scalar is zero const ::basegfx::B2DVector aUnitVecX(get(0, 0), get(1, 0)); const ::basegfx::B2DVector aUnitVecY(get(0, 1), get(1, 1)); if(::basegfx::fTools::equalZero(aUnitVecX.scalar(aUnitVecY))) { // calculate rotation rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); // calculate scale values rScale.setX(aUnitVecX.getLength()); rScale.setY(aUnitVecY.getLength()); // copy translation values rTranslate.setX(get(0, 2)); rTranslate.setY(get(1, 2)); return true; } else { // If determinant is zero, decomposition is not possible if(0.0 == mpM->doDeterminant()) return false; // copy 2x2 matrix and translate vector to 3x3 matrix ::basegfx::B3DHomMatrix a3DHomMat; a3DHomMat.set(0, 0, get(0, 0)); a3DHomMat.set(0, 1, get(0, 1)); a3DHomMat.set(1, 0, get(1, 0)); a3DHomMat.set(1, 1, get(1, 1)); a3DHomMat.set(0, 3, get(0, 2)); a3DHomMat.set(1, 3, get(1, 2)); ::basegfx::B3DTuple r3DScale, r3DTranslate, r3DRotate, r3DShear; if(a3DHomMat.decompose(r3DScale, r3DTranslate, r3DRotate, r3DShear)) { // copy scale values rScale.setX(r3DScale.getX()); rScale.setY(r3DScale.getY()); // copy shear rShearX = r3DShear.getX(); // copy rotate rRotate = r3DRotate.getZ(); // copy translate rTranslate.setX(r3DTranslate.getX()); rTranslate.setY(r3DTranslate.getY()); return true; } } } return false; } } // end of namespace basegfx // eof