/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include namespace basegfx { constexpr int RowSize = 3; void B2DHomMatrix::set3x2(double f_0x0, double f_0x1, double f_0x2, double f_1x0, double f_1x1, double f_1x2) { mfValues[0][0] = f_0x0; mfValues[0][1] = f_0x1; mfValues[0][2] = f_0x2; mfValues[1][0] = f_1x0; mfValues[1][1] = f_1x1; mfValues[1][2] = f_1x2; } bool B2DHomMatrix::isIdentity() const { for(sal_uInt16 a(0); a < RowSize - 1; a++) { for(sal_uInt16 b(0); b < RowSize; b++) { const double fDefault(internal::implGetDefaultValue(a, b)); const double fValueAB(get(a, b)); if(!::basegfx::fTools::equal(fDefault, fValueAB)) { return false; } } } return true; } void B2DHomMatrix::identity() { for(sal_uInt16 a(0); a < RowSize - 1; a++) { for(sal_uInt16 b(0); b < RowSize; b++) mfValues[a][b] = internal::implGetDefaultValue(a, b); } } bool B2DHomMatrix::isInvertible() const { double dst[6]; /* Compute adjoint: */ computeAdjoint(dst); /* Compute determinant: */ double det = computeDeterminant(dst); if (fTools::equalZero(det)) return false; return true; } bool B2DHomMatrix::invert() { if(isIdentity()) return true; double dst[6]; /* Compute adjoint: */ computeAdjoint(dst); /* Compute determinant: */ double det = computeDeterminant(dst); if (fTools::equalZero(det)) return false; /* Multiply adjoint with reciprocal of determinant: */ det = 1.0 / det; mfValues[0][0] = dst[0] * det; mfValues[0][1] = dst[1] * det; mfValues[0][2] = dst[2] * det; mfValues[1][0] = dst[3] * det; mfValues[1][1] = dst[4] * det; mfValues[1][2] = dst[5] * det; return true; } /* Compute adjoint, optimised for the case where the last (not stored) row is { 0, 0, 1 } */ void B2DHomMatrix::computeAdjoint(double (&dst)[6]) const { dst[0] = + get(1, 1); dst[1] = - get(0, 1); dst[2] = + get(0, 1) * get(1, 2) - get(0, 2) * get(1, 1); dst[3] = - get(1, 0); dst[4] = + get(0, 0); dst[5] = - get(0, 0) * get(1, 2) + get(0, 2) * get(1, 0); } /* Compute the determinant, given the adjoint matrix */ double B2DHomMatrix::computeDeterminant(double (&dst)[6]) const { return mfValues[0][0] * dst[0] + mfValues[0][1] * dst[3]; } B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat) { if(rMat.isIdentity()) { // multiply with identity, no change -> nothing to do } else if(isIdentity()) { // we are identity, result will be rMat -> assign *this = rMat; } else { // multiply doMulMatrix(rMat); } return *this; } void B2DHomMatrix::doMulMatrix(const B2DHomMatrix& rMat) { // create a copy as source for the original values const B2DHomMatrix aCopy(*this); for(sal_uInt16 a(0); a < 2; ++a) { for(sal_uInt16 b(0); b < 3; ++b) { double fValue = 0.0; for(sal_uInt16 c(0); c < 2; ++c) fValue += aCopy.mfValues[c][b] * rMat.mfValues[a][c]; mfValues[a][b] = fValue; } mfValues[a][2] += rMat.mfValues[a][2]; } } bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const { if (&rMat == this) return true; for(sal_uInt16 a(0); a < 2; a++) { for(sal_uInt16 b(0); b < 3; b++) { const double fValueA(mfValues[a][b]); const double fValueB(rMat.mfValues[a][b]); if(!::basegfx::fTools::equal(fValueA, fValueB)) { return false; } } } return true; } void B2DHomMatrix::rotate(double fRadiant) { if(fTools::equalZero(fRadiant)) return; double fSin(0.0); double fCos(1.0); utils::createSinCosOrthogonal(fSin, fCos, fRadiant); B2DHomMatrix aRotMat; aRotMat.set(0, 0, fCos); aRotMat.set(1, 1, fCos); aRotMat.set(1, 0, fSin); aRotMat.set(0, 1, -fSin); doMulMatrix(aRotMat); } void B2DHomMatrix::translate(double fX, double fY) { if(!fTools::equalZero(fX) || !fTools::equalZero(fY)) { B2DHomMatrix aTransMat; aTransMat.set(0, 2, fX); aTransMat.set(1, 2, fY); doMulMatrix(aTransMat); } } void B2DHomMatrix::translate(const B2DTuple& rTuple) { translate(rTuple.getX(), rTuple.getY()); } void B2DHomMatrix::scale(double fX, double fY) { const double fOne(1.0); if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY)) { B2DHomMatrix aScaleMat; aScaleMat.set(0, 0, fX); aScaleMat.set(1, 1, fY); doMulMatrix(aScaleMat); } } void B2DHomMatrix::scale(const B2DTuple& rTuple) { scale(rTuple.getX(), rTuple.getY()); } void B2DHomMatrix::shearX(double fSx) { // #i76239# do not test against 1.0, but against 0.0. We are talking about a value not on the diagonal (!) if(!fTools::equalZero(fSx)) { B2DHomMatrix aShearXMat; aShearXMat.set(0, 1, fSx); doMulMatrix(aShearXMat); } } void B2DHomMatrix::shearY(double fSy) { // #i76239# do not test against 1.0, but against 0.0. We are talking about a value not on the diagonal (!) if(!fTools::equalZero(fSy)) { B2DHomMatrix aShearYMat; aShearYMat.set(1, 0, fSy); doMulMatrix(aShearYMat); } } /** Decomposition New, optimized version with local shearX detection. Old version (keeping below, is working well, too) used the 3D matrix decomposition when shear was used. Keeping old version as comment below since it may get necessary to add the determinant() test from there here, too. */ bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const { // reset rotate and shear and copy translation values in every case rRotate = rShearX = 0.0; rTranslate.setX(get(0, 2)); rTranslate.setY(get(1, 2)); // test for rotation and shear if(fTools::equalZero(get(0, 1)) && fTools::equalZero(get(1, 0))) { // no rotation and shear, copy scale values rScale.setX(get(0, 0)); rScale.setY(get(1, 1)); // or is there? if( rScale.getX() < 0 && rScale.getY() < 0 ) { // there is - 180 degree rotated rScale *= -1; rRotate = M_PI; } } else { // get the unit vectors of the transformation -> the perpendicular vectors B2DVector aUnitVecX(get(0, 0), get(1, 0)); B2DVector aUnitVecY(get(0, 1), get(1, 1)); const double fScalarXY(aUnitVecX.scalar(aUnitVecY)); // Test if shear is zero. That's the case if the unit vectors in the matrix // are perpendicular -> scalar is zero. This is also the case when one of // the unit vectors is zero. if(fTools::equalZero(fScalarXY)) { // calculate unsigned scale values rScale.setX(aUnitVecX.getLength()); rScale.setY(aUnitVecY.getLength()); // check unit vectors for zero lengths const bool bXIsZero(fTools::equalZero(rScale.getX())); const bool bYIsZero(fTools::equalZero(rScale.getY())); if(bXIsZero || bYIsZero) { // still extract as much as possible. Scalings are already set if(!bXIsZero) { // get rotation of X-Axis rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); } else if(!bYIsZero) { // get rotation of X-Axis. When assuming X and Y perpendicular // and correct rotation, it's the Y-Axis rotation minus 90 degrees rRotate = atan2(aUnitVecY.getY(), aUnitVecY.getX()) - M_PI_2; } // one or both unit vectors do not exist, determinant is zero, no decomposition possible. // Eventually used rotations or shears are lost return false; } else { // no shear // calculate rotation of X unit vector relative to (1, 0) rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); // use orientation to evtl. correct sign of Y-Scale const double fCrossXY(aUnitVecX.cross(aUnitVecY)); if(fCrossXY < 0.0) { rScale.setY(-rScale.getY()); } } } else { // fScalarXY is not zero, thus both unit vectors exist. No need to handle that here // shear, extract it double fCrossXY(aUnitVecX.cross(aUnitVecY)); // get rotation by calculating angle of X unit vector relative to (1, 0). // This is before the parallel test following the motto to extract // as much as possible rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); // get unsigned scale value for X. It will not change and is useful // for further corrections rScale.setX(aUnitVecX.getLength()); if(fTools::equalZero(fCrossXY)) { // extract as much as possible rScale.setY(aUnitVecY.getLength()); // unit vectors are parallel, thus not linear independent. No // useful decomposition possible. This should not happen since // the only way to get the unit vectors nearly parallel is // a very big shearing. Anyways, be prepared for hand-filled // matrices // Eventually used rotations or shears are lost return false; } else { // calculate the contained shear rShearX = fScalarXY / fCrossXY; if(!fTools::equalZero(rRotate)) { // To be able to correct the shear for aUnitVecY, rotation needs to be // removed first. Correction of aUnitVecX is easy, it will be rotated back to (1, 0). aUnitVecX.setX(rScale.getX()); aUnitVecX.setY(0.0); // for Y correction we rotate the UnitVecY back about -rRotate const double fNegRotate(-rRotate); const double fSin(sin(fNegRotate)); const double fCos(cos(fNegRotate)); const double fNewX(aUnitVecY.getX() * fCos - aUnitVecY.getY() * fSin); const double fNewY(aUnitVecY.getX() * fSin + aUnitVecY.getY() * fCos); aUnitVecY.setX(fNewX); aUnitVecY.setY(fNewY); } // Correct aUnitVecY and fCrossXY to fShear=0. Rotation is already removed. // Shear correction can only work with removed rotation aUnitVecY.setX(aUnitVecY.getX() - (aUnitVecY.getY() * rShearX)); fCrossXY = aUnitVecX.cross(aUnitVecY); // calculate unsigned scale value for Y, after the corrections since // the shear correction WILL change the length of aUnitVecY rScale.setY(aUnitVecY.getLength()); // use orientation to set sign of Y-Scale if(fCrossXY < 0.0) { rScale.setY(-rScale.getY()); } } } } return true; } } // end of namespace basegfx /* vim:set shiftwidth=4 softtabstop=4 expandtab: */