/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include namespace { class CoordinateDataArray2D { private: std::vector maVector; public: explicit CoordinateDataArray2D(sal_uInt32 nCount) : maVector(nCount) { } CoordinateDataArray2D(const CoordinateDataArray2D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) : maVector(rOriginal.maVector.begin() + nIndex, rOriginal.maVector.begin() + (nIndex + nCount)) { } sal_uInt32 count() const { return maVector.size(); } bool operator==(const CoordinateDataArray2D& rCandidate) const { return (maVector == rCandidate.maVector); } const basegfx::B2DPoint& getCoordinate(sal_uInt32 nIndex) const { assert(nIndex < maVector.size()); return maVector[nIndex]; } void setCoordinate(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue) { assert(nIndex < maVector.size()); maVector[nIndex] = rValue; } void reserve(sal_uInt32 nCount) { maVector.reserve(nCount); } void append(const basegfx::B2DPoint& rValue) { maVector.push_back(rValue); } void insert(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue, sal_uInt32 nCount) { assert(nCount > 0); assert(nIndex <= maVector.size()); // add nCount copies of rValue maVector.insert(maVector.begin() + nIndex, nCount, rValue); } void insert(sal_uInt32 nIndex, const CoordinateDataArray2D& rSource) { assert(rSource.maVector.size() > 0); assert(nIndex <= maVector.size()); // insert data auto aIndex = maVector.begin(); aIndex += nIndex; auto aStart = rSource.maVector.cbegin(); auto aEnd = rSource.maVector.cend(); maVector.insert(aIndex, aStart, aEnd); } void remove(sal_uInt32 nIndex, sal_uInt32 nCount) { assert(nCount > 0); assert(nIndex + nCount <= maVector.size()); // remove point data const auto aStart = maVector.begin() + nIndex; const auto aEnd = aStart + nCount; maVector.erase(aStart, aEnd); } void flip(bool bIsClosed) { assert(maVector.size() > 1); // to keep the same point at index 0, just flip all points except the // first one when closed const sal_uInt32 nHalfSize(bIsClosed ? (maVector.size() - 1) >> 1 : maVector.size() >> 1); auto aStart = bIsClosed ? maVector.begin() + 1 : maVector.begin(); auto aEnd = maVector.end() - 1; for(sal_uInt32 a(0); a < nHalfSize; a++) { std::swap(*aStart, *aEnd); ++aStart; --aEnd; } } void removeDoublePointsAtBeginEnd() { // remove from end as long as there are at least two points // and begin/end are equal while((maVector.size() > 1) && (maVector[0] == maVector[maVector.size() - 1])) { maVector.pop_back(); } } void removeDoublePointsWholeTrack() { sal_uInt32 nIndex(0); // test as long as there are at least two points and as long as the index // is smaller or equal second last point while((maVector.size() > 1) && (nIndex <= maVector.size() - 2)) { if(maVector[nIndex] == maVector[nIndex + 1]) { // if next is same as index, delete next maVector.erase(maVector.begin() + (nIndex + 1)); } else { // if different, step forward nIndex++; } } } void transform(const basegfx::B2DHomMatrix& rMatrix) { for (auto& point : maVector) { point *= rMatrix; } } }; class ControlVectorPair2D { basegfx::B2DVector maPrevVector; basegfx::B2DVector maNextVector; public: explicit ControlVectorPair2D() {} const basegfx::B2DVector& getPrevVector() const { return maPrevVector; } void setPrevVector(const basegfx::B2DVector& rValue) { if(rValue != maPrevVector) maPrevVector = rValue; } const basegfx::B2DVector& getNextVector() const { return maNextVector; } void setNextVector(const basegfx::B2DVector& rValue) { if(rValue != maNextVector) maNextVector = rValue; } bool operator==(const ControlVectorPair2D& rData) const { return (maPrevVector == rData.getPrevVector() && maNextVector == rData.getNextVector()); } void flip() { std::swap(maPrevVector, maNextVector); } }; class ControlVectorArray2D { typedef std::vector< ControlVectorPair2D > ControlVectorPair2DVector; ControlVectorPair2DVector maVector; sal_uInt32 mnUsedVectors; public: explicit ControlVectorArray2D(sal_uInt32 nCount) : maVector(nCount), mnUsedVectors(0) {} ControlVectorArray2D(const ControlVectorArray2D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) : mnUsedVectors(0) { assert(nIndex + nCount <= rOriginal.maVector.size()); auto aStart(rOriginal.maVector.begin() + nIndex); auto aEnd(aStart + nCount); maVector.reserve(nCount); for(; aStart != aEnd; ++aStart) { if(!aStart->getPrevVector().equalZero()) mnUsedVectors++; if(!aStart->getNextVector().equalZero()) mnUsedVectors++; maVector.push_back(*aStart); } } bool operator==(const ControlVectorArray2D& rCandidate) const { return (maVector == rCandidate.maVector); } bool isUsed() const { return (mnUsedVectors != 0); } const basegfx::B2DVector& getPrevVector(sal_uInt32 nIndex) const { assert(nIndex < maVector.size()); return maVector[nIndex].getPrevVector(); } void setPrevVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) { bool bWasUsed(mnUsedVectors && !maVector[nIndex].getPrevVector().equalZero()); bool bIsUsed(!rValue.equalZero()); if(bWasUsed) { if(bIsUsed) { maVector[nIndex].setPrevVector(rValue); } else { maVector[nIndex].setPrevVector(basegfx::B2DVector::getEmptyVector()); mnUsedVectors--; } } else { if(bIsUsed) { maVector[nIndex].setPrevVector(rValue); mnUsedVectors++; } } } const basegfx::B2DVector& getNextVector(sal_uInt32 nIndex) const { assert(nIndex < maVector.size()); return maVector[nIndex].getNextVector(); } void setNextVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) { bool bWasUsed(mnUsedVectors && !maVector[nIndex].getNextVector().equalZero()); bool bIsUsed(!rValue.equalZero()); if(bWasUsed) { if(bIsUsed) { maVector[nIndex].setNextVector(rValue); } else { maVector[nIndex].setNextVector(basegfx::B2DVector::getEmptyVector()); mnUsedVectors--; } } else { if(bIsUsed) { maVector[nIndex].setNextVector(rValue); mnUsedVectors++; } } } void append(const ControlVectorPair2D& rValue) { maVector.push_back(rValue); if(!rValue.getPrevVector().equalZero()) mnUsedVectors += 1; if(!rValue.getNextVector().equalZero()) mnUsedVectors += 1; } void insert(sal_uInt32 nIndex, const ControlVectorPair2D& rValue, sal_uInt32 nCount) { assert(nCount > 0); assert(nIndex <= maVector.size()); // add nCount copies of rValue maVector.insert(maVector.begin() + nIndex, nCount, rValue); if(!rValue.getPrevVector().equalZero()) mnUsedVectors += nCount; if(!rValue.getNextVector().equalZero()) mnUsedVectors += nCount; } void insert(sal_uInt32 nIndex, const ControlVectorArray2D& rSource) { assert(rSource.maVector.size() > 0); assert(nIndex <= maVector.size()); // insert data ControlVectorPair2DVector::iterator aIndex(maVector.begin() + nIndex); ControlVectorPair2DVector::const_iterator aStart(rSource.maVector.begin()); ControlVectorPair2DVector::const_iterator aEnd(rSource.maVector.end()); maVector.insert(aIndex, aStart, aEnd); for(; aStart != aEnd; ++aStart) { if(!aStart->getPrevVector().equalZero()) mnUsedVectors++; if(!aStart->getNextVector().equalZero()) mnUsedVectors++; } } void remove(sal_uInt32 nIndex, sal_uInt32 nCount) { assert(nCount > 0); assert(nIndex + nCount <= maVector.size()); const ControlVectorPair2DVector::iterator aDeleteStart(maVector.begin() + nIndex); const ControlVectorPair2DVector::iterator aDeleteEnd(aDeleteStart + nCount); ControlVectorPair2DVector::const_iterator aStart(aDeleteStart); for(; mnUsedVectors && aStart != aDeleteEnd; ++aStart) { if(!aStart->getPrevVector().equalZero()) mnUsedVectors--; if(mnUsedVectors && !aStart->getNextVector().equalZero()) mnUsedVectors--; } // remove point data maVector.erase(aDeleteStart, aDeleteEnd); } void flip(bool bIsClosed) { assert(maVector.size() > 1); // to keep the same point at index 0, just flip all points except the // first one when closed const sal_uInt32 nHalfSize(bIsClosed ? (maVector.size() - 1) >> 1 : maVector.size() >> 1); ControlVectorPair2DVector::iterator aStart(bIsClosed ? maVector.begin() + 1 : maVector.begin()); ControlVectorPair2DVector::iterator aEnd(maVector.end() - 1); for(sal_uInt32 a(0); a < nHalfSize; a++) { // swap Prev and Next aStart->flip(); aEnd->flip(); // swap entries std::swap(*aStart, *aEnd); ++aStart; --aEnd; } if(aStart == aEnd) { // swap Prev and Next at middle element (if exists) aStart->flip(); } if(bIsClosed) { // swap Prev and Next at start element maVector.begin()->flip(); } } }; class ImplBufferedData : public basegfx::SystemDependentDataHolder { private: // Possibility to hold the last subdivision mutable std::optional< basegfx::B2DPolygon > mpDefaultSubdivision; // Possibility to hold the last B2DRange calculation mutable std::optional< basegfx::B2DRange > moB2DRange; public: ImplBufferedData() { } const basegfx::B2DPolygon& getDefaultAdaptiveSubdivision(const basegfx::B2DPolygon& rSource) const { if(!mpDefaultSubdivision) { mpDefaultSubdivision = basegfx::utils::adaptiveSubdivideByAngle(rSource); } return *mpDefaultSubdivision; } const basegfx::B2DRange& getB2DRange(const basegfx::B2DPolygon& rSource) const { if(!moB2DRange) { basegfx::B2DRange aNewRange; const sal_uInt32 nPointCount(rSource.count()); if(nPointCount) { for(sal_uInt32 a(0); a < nPointCount; a++) { aNewRange.expand(rSource.getB2DPoint(a)); } if(rSource.areControlPointsUsed()) { const sal_uInt32 nEdgeCount(rSource.isClosed() ? nPointCount : nPointCount - 1); if(nEdgeCount) { basegfx::B2DCubicBezier aEdge; aEdge.setStartPoint(rSource.getB2DPoint(0)); for(sal_uInt32 b(0); b < nEdgeCount; b++) { const sal_uInt32 nNextIndex((b + 1) % nPointCount); aEdge.setControlPointA(rSource.getNextControlPoint(b)); aEdge.setControlPointB(rSource.getPrevControlPoint(nNextIndex)); aEdge.setEndPoint(rSource.getB2DPoint(nNextIndex)); if(aEdge.isBezier()) { const basegfx::B2DRange aBezierRangeWithControlPoints(aEdge.getRange()); if(!aNewRange.isInside(aBezierRangeWithControlPoints)) { // the range with control points of the current edge is not completely // inside the current range without control points. Expand current range by // subdividing the bezier segment. // Ideal here is a subdivision at the extreme values, so use // getAllExtremumPositions to get all extremas in one run std::vector< double > aExtremas; aExtremas.reserve(4); aEdge.getAllExtremumPositions(aExtremas); const sal_uInt32 nExtremaCount(aExtremas.size()); for(sal_uInt32 c(0); c < nExtremaCount; c++) { aNewRange.expand(aEdge.interpolatePoint(aExtremas[c])); } } } // prepare next edge aEdge.setStartPoint(aEdge.getEndPoint()); } } } } moB2DRange = aNewRange; } return *moB2DRange; } }; } class ImplB2DPolygon { private: // The point vector. This vector exists always and defines the // count of members. CoordinateDataArray2D maPoints; // The control point vectors. This vectors are created on demand // and may be zero. std::optional< ControlVectorArray2D > moControlVector; // buffered data for e.g. default subdivision and range // we do not want to 'modify' the ImplB2DPolygon, // but add buffered data that is valid for all referencing instances mutable std::unique_ptr mpBufferedData; // flag which decides if this polygon is opened or closed bool mbIsClosed; public: const basegfx::B2DPolygon& getDefaultAdaptiveSubdivision(const basegfx::B2DPolygon& rSource) const { if(!moControlVector || !moControlVector->isUsed()) { return rSource; } if(!mpBufferedData) { mpBufferedData.reset(new ImplBufferedData); } return mpBufferedData->getDefaultAdaptiveSubdivision(rSource); } const basegfx::B2DRange& getB2DRange(const basegfx::B2DPolygon& rSource) const { if(!mpBufferedData) { mpBufferedData.reset(new ImplBufferedData); } return mpBufferedData->getB2DRange(rSource); } ImplB2DPolygon() : maPoints(0), mbIsClosed(false) {} ImplB2DPolygon(const ImplB2DPolygon& rToBeCopied) : maPoints(rToBeCopied.maPoints), mbIsClosed(rToBeCopied.mbIsClosed) { // complete initialization using copy if(rToBeCopied.moControlVector && rToBeCopied.moControlVector->isUsed()) { moControlVector.emplace( *rToBeCopied.moControlVector ); } } ImplB2DPolygon(const ImplB2DPolygon& rToBeCopied, sal_uInt32 nIndex, sal_uInt32 nCount) : maPoints(rToBeCopied.maPoints, nIndex, nCount), mbIsClosed(rToBeCopied.mbIsClosed) { // complete initialization using partly copy if(rToBeCopied.moControlVector && rToBeCopied.moControlVector->isUsed()) { moControlVector.emplace( *rToBeCopied.moControlVector, nIndex, nCount ); if(!moControlVector->isUsed()) moControlVector.reset(); } } ImplB2DPolygon& operator=(const ImplB2DPolygon& rOther) { if (this != &rOther) { moControlVector.reset(); mpBufferedData.reset(); maPoints = rOther.maPoints; mbIsClosed = rOther.mbIsClosed; if (rOther.moControlVector && rOther.moControlVector->isUsed()) { moControlVector.emplace( *rOther.moControlVector ); if(!moControlVector->isUsed()) moControlVector.reset(); } } return *this; } sal_uInt32 count() const { return maPoints.count(); } bool isClosed() const { return mbIsClosed; } void setClosed(bool bNew) { if(bNew != mbIsClosed) { mpBufferedData.reset(); mbIsClosed = bNew; } } bool operator==(const ImplB2DPolygon& rCandidate) const { if(mbIsClosed != rCandidate.mbIsClosed) return false; if(!(maPoints == rCandidate.maPoints)) return false; bool bControlVectorsAreEqual(true); if(moControlVector) { if(rCandidate.moControlVector) { bControlVectorsAreEqual = ((*moControlVector) == (*rCandidate.moControlVector)); } else { // candidate has no control vector, so it's assumed all unused. bControlVectorsAreEqual = !moControlVector->isUsed(); } } else { if(rCandidate.moControlVector) { // we have no control vector, so it's assumed all unused. bControlVectorsAreEqual = !rCandidate.moControlVector->isUsed(); } } return bControlVectorsAreEqual; } const basegfx::B2DPoint& getPoint(sal_uInt32 nIndex) const { return maPoints.getCoordinate(nIndex); } void setPoint(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue) { mpBufferedData.reset(); maPoints.setCoordinate(nIndex, rValue); } void reserve(sal_uInt32 nCount) { maPoints.reserve(nCount); } void append(const basegfx::B2DPoint& rPoint) { mpBufferedData.reset(); // TODO: is this needed? const auto aCoordinate = rPoint; maPoints.append(aCoordinate); if(moControlVector) { const ControlVectorPair2D aVectorPair; moControlVector->append(aVectorPair); } } void insert(sal_uInt32 nIndex, const basegfx::B2DPoint& rPoint, sal_uInt32 nCount) { assert(nCount > 0); mpBufferedData.reset(); auto aCoordinate = rPoint; maPoints.insert(nIndex, aCoordinate, nCount); if(moControlVector) { ControlVectorPair2D aVectorPair; moControlVector->insert(nIndex, aVectorPair, nCount); } } void append(const basegfx::B2DPoint& rPoint, sal_uInt32 nCount) { insert(count(), rPoint, nCount); } const basegfx::B2DVector& getPrevControlVector(sal_uInt32 nIndex) const { if(moControlVector) { return moControlVector->getPrevVector(nIndex); } else { return basegfx::B2DVector::getEmptyVector(); } } void setPrevControlVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) { if(!moControlVector) { if(!rValue.equalZero()) { mpBufferedData.reset(); moControlVector.emplace(maPoints.count()); moControlVector->setPrevVector(nIndex, rValue); } } else { mpBufferedData.reset(); moControlVector->setPrevVector(nIndex, rValue); if(!moControlVector->isUsed()) moControlVector.reset(); } } const basegfx::B2DVector& getNextControlVector(sal_uInt32 nIndex) const { if(moControlVector) { return moControlVector->getNextVector(nIndex); } else { return basegfx::B2DVector::getEmptyVector(); } } void setNextControlVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) { if(!moControlVector) { if(!rValue.equalZero()) { mpBufferedData.reset(); moControlVector.emplace(maPoints.count()); moControlVector->setNextVector(nIndex, rValue); } } else { mpBufferedData.reset(); moControlVector->setNextVector(nIndex, rValue); if(!moControlVector->isUsed()) moControlVector.reset(); } } bool areControlPointsUsed() const { return (moControlVector && moControlVector->isUsed()); } void resetControlVectors() { mpBufferedData.reset(); moControlVector.reset(); } void setControlVectors(sal_uInt32 nIndex, const basegfx::B2DVector& rPrev, const basegfx::B2DVector& rNext) { setPrevControlVector(nIndex, rPrev); setNextControlVector(nIndex, rNext); } void appendBezierSegment(const basegfx::B2DVector& rNext, const basegfx::B2DVector& rPrev, const basegfx::B2DPoint& rPoint) { mpBufferedData.reset(); const sal_uInt32 nCount(maPoints.count()); if(nCount) { setNextControlVector(nCount - 1, rNext); } insert(nCount, rPoint, 1); setPrevControlVector(nCount, rPrev); } void append(const ImplB2DPolygon& rSource) { assert(rSource.maPoints.count() > 0); const sal_uInt32 nIndex = count(); mpBufferedData.reset(); maPoints.insert(nIndex, rSource.maPoints); if(rSource.moControlVector) { if (!moControlVector) moControlVector.emplace(nIndex); moControlVector->insert(nIndex, *rSource.moControlVector); if(!moControlVector->isUsed()) moControlVector.reset(); } else if(moControlVector) { ControlVectorPair2D aVectorPair; moControlVector->insert(nIndex, aVectorPair, rSource.count()); } } void remove(sal_uInt32 nIndex, sal_uInt32 nCount) { assert(nCount > 0); mpBufferedData.reset(); maPoints.remove(nIndex, nCount); if(moControlVector) { moControlVector->remove(nIndex, nCount); if(!moControlVector->isUsed()) moControlVector.reset(); } } void flip() { assert(maPoints.count() > 1); mpBufferedData.reset(); // flip points maPoints.flip(mbIsClosed); if(moControlVector) { // flip control vector moControlVector->flip(mbIsClosed); } } bool hasDoublePoints() const { if(mbIsClosed) { // check for same start and end point const sal_uInt32 nIndex(maPoints.count() - 1); if(maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)) { if(moControlVector) { if(moControlVector->getNextVector(nIndex).equalZero() && moControlVector->getPrevVector(0).equalZero()) { return true; } } else { return true; } } } // test for range for(sal_uInt32 a(0); a < maPoints.count() - 1; a++) { if(maPoints.getCoordinate(a) == maPoints.getCoordinate(a + 1)) { if(moControlVector) { if(moControlVector->getNextVector(a).equalZero() && moControlVector->getPrevVector(a + 1).equalZero()) { return true; } } else { return true; } } } return false; } void removeDoublePointsAtBeginEnd() { // Only remove DoublePoints at Begin and End when poly is closed if(!mbIsClosed) return; mpBufferedData.reset(); if(moControlVector) { bool bRemove; do { bRemove = false; if(maPoints.count() > 1) { const sal_uInt32 nIndex(maPoints.count() - 1); if(maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)) { if(moControlVector) { if(moControlVector->getNextVector(nIndex).equalZero() && moControlVector->getPrevVector(0).equalZero()) { bRemove = true; } } else { bRemove = true; } } } if(bRemove) { const sal_uInt32 nIndex(maPoints.count() - 1); if(moControlVector && !moControlVector->getPrevVector(nIndex).equalZero()) { moControlVector->setPrevVector(0, moControlVector->getPrevVector(nIndex)); } remove(nIndex, 1); } } while(bRemove); } else { maPoints.removeDoublePointsAtBeginEnd(); } } void removeDoublePointsWholeTrack() { mpBufferedData.reset(); if(moControlVector) { sal_uInt32 nIndex(0); // test as long as there are at least two points and as long as the index // is smaller or equal second last point while((maPoints.count() > 1) && (nIndex <= maPoints.count() - 2)) { bool bRemove(maPoints.getCoordinate(nIndex) == maPoints.getCoordinate(nIndex + 1)); if(bRemove && moControlVector) { if(!moControlVector->getNextVector(nIndex).equalZero() || !moControlVector->getPrevVector(nIndex + 1).equalZero()) { bRemove = false; } } if(bRemove) { if(moControlVector && !moControlVector->getPrevVector(nIndex).equalZero()) { moControlVector->setPrevVector(nIndex + 1, moControlVector->getPrevVector(nIndex)); } // if next is same as index and the control vectors are unused, delete index remove(nIndex, 1); } else { // if different, step forward nIndex++; } } } else { maPoints.removeDoublePointsWholeTrack(); } } void transform(const basegfx::B2DHomMatrix& rMatrix) { mpBufferedData.reset(); if(moControlVector) { for(sal_uInt32 a(0); a < maPoints.count(); a++) { basegfx::B2DPoint aCandidate = maPoints.getCoordinate(a); if(moControlVector->isUsed()) { const basegfx::B2DVector& rPrevVector(moControlVector->getPrevVector(a)); const basegfx::B2DVector& rNextVector(moControlVector->getNextVector(a)); if(!rPrevVector.equalZero()) { basegfx::B2DVector aPrevVector(rMatrix * rPrevVector); moControlVector->setPrevVector(a, aPrevVector); } if(!rNextVector.equalZero()) { basegfx::B2DVector aNextVector(rMatrix * rNextVector); moControlVector->setNextVector(a, aNextVector); } } aCandidate *= rMatrix; maPoints.setCoordinate(a, aCandidate); } if(!moControlVector->isUsed()) moControlVector.reset(); } else { maPoints.transform(rMatrix); } } void addOrReplaceSystemDependentData(basegfx::SystemDependentData_SharedPtr& rData) const { if(!mpBufferedData) { mpBufferedData.reset(new ImplBufferedData); } mpBufferedData->addOrReplaceSystemDependentData(rData); } basegfx::SystemDependentData_SharedPtr getSystemDependentData(size_t hash_code) const { if(mpBufferedData) { return mpBufferedData->getSystemDependentData(hash_code); } return basegfx::SystemDependentData_SharedPtr(); } }; namespace basegfx { static o3tl::cow_wrapper DEFAULT; B2DPolygon::B2DPolygon() : mpPolygon(DEFAULT) {} B2DPolygon::B2DPolygon(std::initializer_list aPoints) { for (const basegfx::B2DPoint& rPoint : aPoints) { append(rPoint); } } B2DPolygon::B2DPolygon(const B2DPolygon&) = default; B2DPolygon::B2DPolygon(B2DPolygon&&) = default; B2DPolygon::B2DPolygon(const B2DPolygon& rPolygon, sal_uInt32 nIndex, sal_uInt32 nCount) : mpPolygon(ImplB2DPolygon(*rPolygon.mpPolygon, nIndex, nCount)) { } B2DPolygon::~B2DPolygon() = default; B2DPolygon& B2DPolygon::operator=(const B2DPolygon&) = default; B2DPolygon& B2DPolygon::operator=(B2DPolygon&&) = default; void B2DPolygon::makeUnique() { mpPolygon.make_unique(); } bool B2DPolygon::operator==(const B2DPolygon& rPolygon) const { if(mpPolygon.same_object(rPolygon.mpPolygon)) return true; return ((*mpPolygon) == (*rPolygon.mpPolygon)); } bool B2DPolygon::operator!=(const B2DPolygon& rPolygon) const { return !(*this == rPolygon); } sal_uInt32 B2DPolygon::count() const { return mpPolygon->count(); } B2DPoint const & B2DPolygon::getB2DPoint(sal_uInt32 nIndex) const { return mpPolygon->getPoint(nIndex); } void B2DPolygon::setB2DPoint(sal_uInt32 nIndex, const B2DPoint& rValue) { if(getB2DPoint(nIndex) != rValue) { mpPolygon->setPoint(nIndex, rValue); } } void B2DPolygon::reserve(sal_uInt32 nCount) { mpPolygon->reserve(nCount); } void B2DPolygon::insert(sal_uInt32 nIndex, const B2DPoint& rPoint, sal_uInt32 nCount) { if(nCount) { mpPolygon->insert(nIndex, rPoint, nCount); } } void B2DPolygon::append(const B2DPoint& rPoint, sal_uInt32 nCount) { if(nCount) { mpPolygon->append(rPoint, nCount); } } void B2DPolygon::append(const B2DPoint& rPoint) { mpPolygon->append(rPoint); } const basegfx::B2DVector& B2DPolygon::getPrevControlVector(sal_uInt32 nIndex) const { return mpPolygon->getPrevControlVector(nIndex); } const basegfx::B2DVector& B2DPolygon::getNextControlVector(sal_uInt32 nIndex) const { return mpPolygon->getNextControlVector(nIndex); } B2DPoint B2DPolygon::getPrevControlPoint(sal_uInt32 nIndex) const { if(areControlPointsUsed()) { return getB2DPoint(nIndex) + getPrevControlVector(nIndex); } else { return getB2DPoint(nIndex); } } B2DPoint B2DPolygon::getNextControlPoint(sal_uInt32 nIndex) const { if(areControlPointsUsed()) { return getB2DPoint(nIndex) + getNextControlVector(nIndex); } else { return getB2DPoint(nIndex); } } void B2DPolygon::setPrevControlPoint(sal_uInt32 nIndex, const B2DPoint& rValue) { const basegfx::B2DVector aNewVector(rValue - getB2DPoint(nIndex)); if(getPrevControlVector(nIndex) != aNewVector) { mpPolygon->setPrevControlVector(nIndex, aNewVector); } } void B2DPolygon::setNextControlPoint(sal_uInt32 nIndex, const B2DPoint& rValue) { const basegfx::B2DVector aNewVector(rValue - getB2DPoint(nIndex)); if(getNextControlVector(nIndex) != aNewVector) { mpPolygon->setNextControlVector(nIndex, aNewVector); } } void B2DPolygon::setControlPoints(sal_uInt32 nIndex, const basegfx::B2DPoint& rPrev, const basegfx::B2DPoint& rNext) { const B2DPoint aPoint(getB2DPoint(nIndex)); const basegfx::B2DVector aNewPrev(rPrev - aPoint); const basegfx::B2DVector aNewNext(rNext - aPoint); if(getPrevControlVector(nIndex) != aNewPrev || getNextControlVector(nIndex) != aNewNext) { mpPolygon->setControlVectors(nIndex, aNewPrev, aNewNext); } } void B2DPolygon::resetPrevControlPoint(sal_uInt32 nIndex) { if(areControlPointsUsed() && !getPrevControlVector(nIndex).equalZero()) { mpPolygon->setPrevControlVector(nIndex, B2DVector::getEmptyVector()); } } void B2DPolygon::resetNextControlPoint(sal_uInt32 nIndex) { if(areControlPointsUsed() && !getNextControlVector(nIndex).equalZero()) { mpPolygon->setNextControlVector(nIndex, B2DVector::getEmptyVector()); } } void B2DPolygon::resetControlPoints() { if(areControlPointsUsed()) { mpPolygon->resetControlVectors(); } } void B2DPolygon::appendBezierSegment( const B2DPoint& rNextControlPoint, const B2DPoint& rPrevControlPoint, const B2DPoint& rPoint) { const B2DVector aNewNextVector(count() ? B2DVector(rNextControlPoint - getB2DPoint(count() - 1)) : B2DVector::getEmptyVector()); const B2DVector aNewPrevVector(rPrevControlPoint - rPoint); if(aNewNextVector.equalZero() && aNewPrevVector.equalZero()) { mpPolygon->append(rPoint); } else { mpPolygon->appendBezierSegment(aNewNextVector, aNewPrevVector, rPoint); } } void B2DPolygon::appendQuadraticBezierSegment(const B2DPoint& rControlPoint, const B2DPoint& rPoint) { if (count() == 0) { mpPolygon->append(rPoint); const double nX((rControlPoint.getX() * 2.0 + rPoint.getX()) / 3.0); const double nY((rControlPoint.getY() * 2.0 + rPoint.getY()) / 3.0); setPrevControlPoint(0, B2DPoint(nX, nY)); } else { const B2DPoint aPreviousPoint(getB2DPoint(count() - 1)); const double nX1((rControlPoint.getX() * 2.0 + aPreviousPoint.getX()) / 3.0); const double nY1((rControlPoint.getY() * 2.0 + aPreviousPoint.getY()) / 3.0); const double nX2((rControlPoint.getX() * 2.0 + rPoint.getX()) / 3.0); const double nY2((rControlPoint.getY() * 2.0 + rPoint.getY()) / 3.0); appendBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX2, nY2), rPoint); } } bool B2DPolygon::areControlPointsUsed() const { return mpPolygon->areControlPointsUsed(); } bool B2DPolygon::isPrevControlPointUsed(sal_uInt32 nIndex) const { return (areControlPointsUsed() && !getPrevControlVector(nIndex).equalZero()); } bool B2DPolygon::isNextControlPointUsed(sal_uInt32 nIndex) const { return (areControlPointsUsed() && !getNextControlVector(nIndex).equalZero()); } B2VectorContinuity B2DPolygon::getContinuityInPoint(sal_uInt32 nIndex) const { if(areControlPointsUsed()) { const B2DVector& rPrev(getPrevControlVector(nIndex)); const B2DVector& rNext(getNextControlVector(nIndex)); return getContinuity(rPrev, rNext); } else { return B2VectorContinuity::NONE; } } void B2DPolygon::getBezierSegment(sal_uInt32 nIndex, B2DCubicBezier& rTarget) const { const bool bNextIndexValidWithoutClose(nIndex + 1 < count()); if(bNextIndexValidWithoutClose || isClosed()) { const sal_uInt32 nNextIndex(bNextIndexValidWithoutClose ? nIndex + 1 : 0); rTarget.setStartPoint(getB2DPoint(nIndex)); rTarget.setEndPoint(getB2DPoint(nNextIndex)); if(areControlPointsUsed()) { rTarget.setControlPointA(rTarget.getStartPoint() + getNextControlVector(nIndex)); rTarget.setControlPointB(rTarget.getEndPoint() + getPrevControlVector(nNextIndex)); } else { // no bezier, reset control points at rTarget rTarget.setControlPointA(rTarget.getStartPoint()); rTarget.setControlPointB(rTarget.getEndPoint()); } } else { // no valid edge at all, reset rTarget to current point const B2DPoint aPoint(getB2DPoint(nIndex)); rTarget.setStartPoint(aPoint); rTarget.setEndPoint(aPoint); rTarget.setControlPointA(aPoint); rTarget.setControlPointB(aPoint); } } B2DPolygon const & B2DPolygon::getDefaultAdaptiveSubdivision() const { return mpPolygon->getDefaultAdaptiveSubdivision(*this); } B2DRange const & B2DPolygon::getB2DRange() const { return mpPolygon->getB2DRange(*this); } void B2DPolygon::append(const B2DPolygon& rPoly, sal_uInt32 nIndex, sal_uInt32 nCount) { assert(nIndex + nCount <= rPoly.count()); if(!nCount) { nCount = rPoly.count() - nIndex; if (!nCount) return; } if(nIndex == 0 && nCount == rPoly.count()) { mpPolygon->append(*rPoly.mpPolygon); } else { mpPolygon->append(ImplB2DPolygon(*rPoly.mpPolygon, nIndex, nCount)); } } void B2DPolygon::remove(sal_uInt32 nIndex, sal_uInt32 nCount) { if(nCount) { mpPolygon->remove(nIndex, nCount); } } void B2DPolygon::clear() { *mpPolygon = ImplB2DPolygon(); } bool B2DPolygon::isClosed() const { return mpPolygon->isClosed(); } void B2DPolygon::setClosed(bool bNew) { if(isClosed() != bNew) { mpPolygon->setClosed(bNew); } } void B2DPolygon::flip() { if(count() > 1) { mpPolygon->flip(); } } bool B2DPolygon::hasDoublePoints() const { return (count() > 1 && mpPolygon->hasDoublePoints()); } void B2DPolygon::removeDoublePoints() { if(hasDoublePoints()) { mpPolygon->removeDoublePointsAtBeginEnd(); mpPolygon->removeDoublePointsWholeTrack(); } } void B2DPolygon::transform(const B2DHomMatrix& rMatrix) { if(count() && !rMatrix.isIdentity()) { mpPolygon->transform(rMatrix); } } void B2DPolygon::addOrReplaceSystemDependentDataInternal(SystemDependentData_SharedPtr& rData) const { mpPolygon->addOrReplaceSystemDependentData(rData); } SystemDependentData_SharedPtr B2DPolygon::getSystemDependantDataInternal(size_t hash_code) const { return mpPolygon->getSystemDependentData(hash_code); } } // end of namespace basegfx /* vim:set shiftwidth=4 softtabstop=4 expandtab: */