/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include namespace basegfx { namespace { class EdgeEntry { EdgeEntry* mpNext; B2DPoint maStart; B2DPoint maEnd; double mfAtan2; public: EdgeEntry(const B2DPoint& rStart, const B2DPoint& rEnd) : mpNext(nullptr), maStart(rStart), maEnd(rEnd), mfAtan2(0.0) { // make sure edge goes down. If horizontal, let it go to the right (left-handed). bool bSwap(false); if(::basegfx::fTools::equal(maStart.getY(), maEnd.getY())) { if(maStart.getX() > maEnd.getX()) { bSwap = true; } } else if(maStart.getY() > maEnd.getY()) { bSwap = true; } if(bSwap) { maStart = rEnd; maEnd = rStart; } mfAtan2 = atan2(maEnd.getY() - maStart.getY(), maEnd.getX() - maStart.getX()); } bool operator<(const EdgeEntry& rComp) const { if(::basegfx::fTools::equal(maStart.getY(), rComp.maStart.getY())) { if(::basegfx::fTools::equal(maStart.getX(), rComp.maStart.getX())) { // same in x and y -> same start point. Sort emitting vectors from left to right. return (mfAtan2 > rComp.mfAtan2); } return (maStart.getX() < rComp.maStart.getX()); } return (maStart.getY() < rComp.maStart.getY()); } bool operator==(const EdgeEntry& rComp) const { return (maStart.equal(rComp.maStart) && maEnd.equal(rComp.maEnd)); } const B2DPoint& getStart() const { return maStart; } const B2DPoint& getEnd() const { return maEnd; } EdgeEntry* getNext() const { return mpNext; } void setNext(EdgeEntry* pNext) { mpNext = pNext; } }; typedef std::vector< EdgeEntry > EdgeEntries; class Triangulator { EdgeEntry* mpList; EdgeEntries maStartEntries; std::vector< std::unique_ptr > maNewEdgeEntries; triangulator::B2DTriangleVector maResult; void handleClosingEdge(const B2DPoint& rStart, const B2DPoint& rEnd); bool CheckPointInTriangle(EdgeEntry* pEdgeA, EdgeEntry const * pEdgeB, const B2DPoint& rTestPoint); void createTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC); public: explicit Triangulator(const B2DPolyPolygon& rCandidate); const triangulator::B2DTriangleVector& getResult() const { return maResult; } }; void Triangulator::handleClosingEdge(const B2DPoint& rStart, const B2DPoint& rEnd) { // create an entry, else the comparison might use the wrong edges EdgeEntry aNew(rStart, rEnd); EdgeEntry* pCurr = mpList; EdgeEntry* pPrev = nullptr; while(pCurr && pCurr->getStart().getY() <= aNew.getStart().getY() && *pCurr != aNew) { pPrev = pCurr; pCurr = pCurr->getNext(); } if(pCurr && *pCurr == aNew) { // found closing edge, remove if(pPrev) { pPrev->setNext(pCurr->getNext()); } else { mpList = pCurr->getNext(); } } else { // insert closing edge EdgeEntry* pNew = new EdgeEntry(aNew); maNewEdgeEntries.emplace_back(pNew); pCurr = mpList; pPrev = nullptr; while(pCurr && *pCurr < *pNew) { pPrev = pCurr; pCurr = pCurr->getNext(); } if(pPrev) { pNew->setNext(pPrev->getNext()); pPrev->setNext(pNew); } else { pNew->setNext(mpList); mpList = pNew; } } } bool Triangulator::CheckPointInTriangle(EdgeEntry* pEdgeA, EdgeEntry const * pEdgeB, const B2DPoint& rTestPoint) { // inside triangle or on edge? if(!utils::isPointInTriangle(pEdgeA->getStart(), pEdgeA->getEnd(), pEdgeB->getEnd(), rTestPoint, true)) return true; // but not on point if(!rTestPoint.equal(pEdgeA->getEnd()) && !rTestPoint.equal(pEdgeB->getEnd())) { // found point in triangle -> split triangle inserting two edges EdgeEntry* pStart = new EdgeEntry(pEdgeA->getStart(), rTestPoint); EdgeEntry* pEnd = new EdgeEntry(*pStart); maNewEdgeEntries.emplace_back(pStart); maNewEdgeEntries.emplace_back(pEnd); pStart->setNext(pEnd); pEnd->setNext(pEdgeA->getNext()); pEdgeA->setNext(pStart); return false; } return true; } void Triangulator::createTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC) { maResult.emplace_back( rA, rB, rC); } // consume as long as there are edges Triangulator::Triangulator(const B2DPolyPolygon& rCandidate) : mpList(nullptr) { // add all available edges to the single linked local list which will be sorted // by Y,X,atan2 when adding nodes if(rCandidate.count()) { for(const auto& rPolygonCandidate : rCandidate) { const sal_uInt32 nCount {rPolygonCandidate.count()}; if(nCount > 2) { B2DPoint aPrevPnt(rPolygonCandidate.getB2DPoint(nCount - 1)); for(sal_uInt32 b(0); b < nCount; b++) { B2DPoint aNextPnt(rPolygonCandidate.getB2DPoint(b)); if( !aPrevPnt.equal(aNextPnt) ) { maStartEntries.emplace_back(aPrevPnt, aNextPnt); } aPrevPnt = aNextPnt; } } } if(!maStartEntries.empty()) { // sort initial list std::sort(maStartEntries.begin(), maStartEntries.end()); // insert to own simply linked list EdgeEntries::iterator aPos(maStartEntries.begin()); mpList = &(*aPos++); EdgeEntry* pLast = mpList; while(aPos != maStartEntries.end()) { EdgeEntry* pEntry = &(*aPos++); pLast->setNext(pEntry); pLast = pEntry; } } } while(mpList) { if(mpList->getNext() && mpList->getNext()->getStart().equal(mpList->getStart())) { // next candidate. There are two edges and start point is equal. // Length is not zero. EdgeEntry* pEdgeA = mpList; EdgeEntry* pEdgeB = pEdgeA->getNext(); if( pEdgeA->getEnd().equal(pEdgeB->getEnd()) ) { // start and end equal -> neutral triangle, delete both mpList = pEdgeB->getNext(); } else { const B2DVector aLeft(pEdgeA->getEnd() - pEdgeA->getStart()); const B2DVector aRight(pEdgeB->getEnd() - pEdgeA->getStart()); if(getOrientation(aLeft, aRight) == B2VectorOrientation::Neutral) { // edges are parallel and have different length -> neutral triangle, // delete both edges and handle closing edge mpList = pEdgeB->getNext(); handleClosingEdge(pEdgeA->getEnd(), pEdgeB->getEnd()); } else { // not parallel, look for points inside B2DRange aRange(pEdgeA->getStart(), pEdgeA->getEnd()); aRange.expand(pEdgeB->getEnd()); EdgeEntry* pTestEdge = pEdgeB->getNext(); bool bNoPointInTriangle(true); // look for start point in triangle while(bNoPointInTriangle && pTestEdge) { if(aRange.getMaxY() < pTestEdge->getStart().getY()) { // edge is below test range and edges are sorted -> stop looking break; } else { // do not look for edges with same start point, they are sorted and cannot end inside. if(!pTestEdge->getStart().equal(pEdgeA->getStart())) { if(aRange.isInside(pTestEdge->getStart())) { bNoPointInTriangle = CheckPointInTriangle(pEdgeA, pEdgeB, pTestEdge->getStart()); } } } // next candidate pTestEdge = pTestEdge->getNext(); } if(bNoPointInTriangle) { // look for end point in triangle pTestEdge = pEdgeB->getNext(); while(bNoPointInTriangle && pTestEdge) { if(aRange.getMaxY() < pTestEdge->getStart().getY()) { // edge is below test range and edges are sorted -> stop looking break; } else { // do not look for edges with same end point, they are sorted and cannot end inside. if(!pTestEdge->getEnd().equal(pEdgeA->getStart())) { if(aRange.isInside(pTestEdge->getEnd())) { bNoPointInTriangle = CheckPointInTriangle(pEdgeA, pEdgeB, pTestEdge->getEnd()); } } } // next candidate pTestEdge = pTestEdge->getNext(); } } if(bNoPointInTriangle) { // create triangle, remove edges, handle closing edge mpList = pEdgeB->getNext(); createTriangle(pEdgeA->getStart(), pEdgeB->getEnd(), pEdgeA->getEnd()); handleClosingEdge(pEdgeA->getEnd(), pEdgeB->getEnd()); } } } } else { // only one entry at start point, delete it mpList = mpList->getNext(); } } } } // end of anonymous namespace } // end of namespace basegfx namespace basegfx::triangulator { B2DTriangleVector triangulate(const B2DPolygon& rCandidate) { B2DTriangleVector aRetval; // subdivide locally (triangulate does not work with beziers), remove double and neutral points B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? utils::adaptiveSubdivideByAngle(rCandidate) : rCandidate); aCandidate.removeDoublePoints(); aCandidate = utils::removeNeutralPoints(aCandidate); if(aCandidate.count() == 2) { // candidate IS a triangle, just append aRetval.emplace_back( aCandidate.getB2DPoint(0), aCandidate.getB2DPoint(1), aCandidate.getB2DPoint(2)); } else if(aCandidate.count() > 2) { if(utils::isConvex(aCandidate)) { // polygon is convex, just use a triangle fan utils::addTriangleFan(aCandidate, aRetval); } else { // polygon is concave. const B2DPolyPolygon aCandPolyPoly(aCandidate); Triangulator aTriangulator(aCandPolyPoly); aRetval = aTriangulator.getResult(); } } return aRetval; } B2DTriangleVector triangulate(const B2DPolyPolygon& rCandidate) { B2DTriangleVector aRetval; // subdivide locally (triangulate does not work with beziers) B2DPolyPolygon aCandidate(rCandidate.areControlPointsUsed() ? utils::adaptiveSubdivideByAngle(rCandidate) : rCandidate); if(aCandidate.count() == 1) { // single polygon -> single polygon triangulation const B2DPolygon& aSinglePolygon(aCandidate.getB2DPolygon(0)); aRetval = triangulate(aSinglePolygon); } else { Triangulator aTriangulator(aCandidate); aRetval = aTriangulator.getResult(); } return aRetval; } } // end of namespace /* vim:set shiftwidth=4 softtabstop=4 expandtab: */