/************************************************************************* * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: bezierclip.hxx,v $ * * $Revision: 1.5 $ * * last change: $Author: rt $ $Date: 2005-09-07 20:56:06 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. * * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2005 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ************************************************************************/ #ifndef BASEGFX_BEZIERCLIP_HXX #define BASEGFX_BEZIERCLIP_HXX #include struct Point2D { typedef double value_type; Point2D( double _x, double _y ) : x(_x), y(_y) {} Point2D() : x(), y() {} double x; double y; }; struct Bezier { Point2D p0; Point2D p1; Point2D p2; Point2D p3; Point2D& operator[]( int i ) { return reinterpret_cast(this)[i]; } const Point2D& operator[]( int i ) const { return reinterpret_cast(this)[i]; } }; struct FatLine { // line L through p1 and p4 in normalized implicit form double a; double b; double c; // the upper and lower distance from this line double dMin; double dMax; }; template DataType calcLineDistance( const DataType& a, const DataType& b, const DataType& c, const DataType& x, const DataType& y ) { return a*x + b*y + c; } typedef ::std::vector< Point2D > Polygon2D; /* little abs template */ template NumType absval( NumType x ) { return x<0 ? -x : x; } Polygon2D convexHull( const Polygon2D& rPoly ); // TODO: find proper epsilon here (try ::std::numeric_limits::epsilon()?)! #define DBL_EPSILON 1.0e-100 /* little approximate comparions */ template bool tolZero( NumType n ) { return fabs(n) < DBL_EPSILON; } template bool tolEqual( NumType n1, NumType n2 ) { return tolZero(n1-n2); } template bool tolLessEqual( NumType n1, NumType n2 ) { return tolEqual(n1,n2) || n1 bool tolGreaterEqual( NumType n1, NumType n2 ) { return tolEqual(n1,n2) || n1>n2; } #endif /* BASEGFX_BEZIERCLIP_HXX */