/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2008 by Sun Microsystems, Inc. * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: convexhull.cxx,v $ * $Revision: 1.6 $ * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_basegfx.hxx" #include #include #include #include "bezierclip.hxx" // ----------------------------------------------------------------------------- /* Implements the theta function from Sedgewick: Algorithms in XXX, chapter 24 */ template double theta( const PointType& p1, const PointType& p2 ) { typename PointType::value_type dx, dy, ax, ay; double t; dx = p2.x - p1.x; ax = absval( dx ); dy = p2.y - p1.y; ay = absval( dy ); t = (ax+ay == 0) ? 0 : (double) dy/(ax+ay); if( dx < 0 ) t = 2-t; else if( dy < 0 ) t = 4+t; return t*90.0; } /* Model of LessThanComparable for theta sort. * Uses the theta function from Sedgewick: Algorithms in XXX, chapter 24 */ template class ThetaCompare : public ::std::binary_function< const PointType&, const PointType&, bool > { public: ThetaCompare( const PointType& rRefPoint ) : maRefPoint( rRefPoint ) {} bool operator() ( const PointType& p1, const PointType& p2 ) { // return true, if p1 precedes p2 in the angle relative to maRefPoint return theta(maRefPoint, p1) < theta(maRefPoint, p2); } double operator() ( const PointType& p ) const { return theta(maRefPoint, p); } private: PointType maRefPoint; }; /* Implementation of the predicate 'counter-clockwise' for three points, from Sedgewick: Algorithms in XXX, chapter 24 */ template typename PointType::value_type ccw( const PointType& p0, const PointType& p1, const PointType& p2, CmpFunctor& thetaCmp ) { typename PointType::value_type dx1, dx2, dy1, dy2; typename PointType::value_type theta0( thetaCmp(p0) ); typename PointType::value_type theta1( thetaCmp(p1) ); typename PointType::value_type theta2( thetaCmp(p2) ); #if 0 if( theta0 == theta1 || theta0 == theta2 || theta1 == theta2 ) { // cannot reliably compare, as at least two points are // theta-equal. See bug description below return 0; } #endif dx1 = p1.x - p0.x; dy1 = p1.y - p0.y; dx2 = p2.x - p0.x; dy2 = p2.y - p0.y; if( dx1*dy2 > dy1*dx2 ) return +1; if( dx1*dy2 < dy1*dx2 ) return -1; if( (dx1*dx2 < 0) || (dy1*dy2 < 0) ) return -1; if( (dx1*dx1 + dy1*dy1) < (dx2*dx2 + dy2*dy2) ) return +1; return 0; } /* Bug === Sometimes, the resulting polygon is not the convex hull (see below for an edge configuration to reproduce that problem) Problem analysis: ================= The root cause of this bug is the fact that the second part of the algorithm (the 'wrapping' of the point set) relies on the previous theta sorting. Namely, it is required that the generated point ordering, when interpreted as a polygon, is not self-intersecting. This property, although, cannot be guaranteed due to limited floating point accuracy. For example, for two points very close together, and at the same time very far away from the theta reference point p1, can appear on the same theta value (because floating point accuracy is limited), although on different rays to p1 when inspected locally. Example: / P3 / |\ / | / |/ \ P2 \ \ ...____________\ P1 Here, P2 and P3 are theta-equal relative to P1, but the local ccw measure always says 'left turn'. Thus, the convex hull is wrong at this place. Solution: ========= If two points are theta-equal and checked via ccw, ccw must also classify them as 'equal'. Thus, the second stage of the convex hull algorithm sorts the first one out, effectively reducing a cluster of theta-equal points to only one. This single point can then be treated correctly. */ /* Implementation of Graham's convex hull algorithm, see Sedgewick: Algorithms in XXX, chapter 25 */ Polygon2D convexHull( const Polygon2D& rPoly ) { const Polygon2D::size_type N( rPoly.size() ); Polygon2D result( N + 1 ); ::std::copy(rPoly.begin(), rPoly.end(), result.begin()+1 ); Polygon2D::size_type min, i; // determine safe point on hull (smallest y value) for( min=1, i=2; i<=N; ++i ) { if( result[i].y < result[min].y ) min = i; } // determine safe point on hull (largest x value) for( i=1; i<=N; ++i ) { if( result[i].y == result[min].y && result[i].x > result[min].x ) { min = i; } } // TODO: add inner elimination optimization from Sedgewick: Algorithms in XXX, chapter 25 // TODO: use radix sort instead of ::std::sort(), calc theta only once and store // setup first point and sort ::std::swap( result[1], result[min] ); ThetaCompare cmpFunc(result[1]); ::std::sort( result.begin()+1, result.end(), cmpFunc ); // setup sentinel result[0] = result[N]; // generate convex hull Polygon2D::size_type M; for( M=3, i=4; i<=N; ++i ) { while( ccw(result[M], result[M-1], result[i], cmpFunc) >= 0 ) --M; ++M; ::std::swap( result[M], result[i] ); } // copy range [1,M] to output return Polygon2D( result.begin()+1, result.begin()+M+1 ); }