/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #include #include #include #include "com/sun/star/uno/RuntimeException.hpp" #include #include #include #include #include #include "share.hxx" #include #include /* * Based on http://gcc.gnu.org/PR41443 * References to __SOFTFP__ are incorrect for EABI; the __SOFTFP__ code * should be used for *soft-float ABI* whether or not VFP is enabled, * and __SOFTFP__ does specifically mean soft-float not soft-float ABI. * * Changing the conditionals to __SOFTFP__ || __ARM_EABI__ then * -mfloat-abi=softfp should work. -mfloat-abi=hard won't; that would * need both a new macro to identify the hard-VFP ABI. */ #if !defined(__ARM_EABI__) && !defined(__SOFTFP__) #error Not Implemented /* some possibly handy code to detect that we have VFP registers */ #include #include #include #include #include #define HWCAP_ARM_VFP 64 int hasVFP(void) { int fd = open ("/proc/self/auxv", O_RDONLY); if (fd == -1) return -1; int ret = -1; Elf32_auxv_t buf[128]; ssize_t n; while ((ret == -1) && ((n = read(fd, buf, sizeof (buf))) > 0)) { for (int i = 0; i < 128; ++i) { if (buf[i].a_type == AT_HWCAP) { ret = (buf[i].a_un.a_val & HWCAP_ARM_VFP) ? true : false; break; } else if (buf[i].a_type == AT_NULL) { ret = -2; break; } } } close (fd); return ret; } #endif using namespace ::rtl; using namespace ::com::sun::star::uno; namespace arm { bool is_complex_struct(const typelib_TypeDescription * type) { const typelib_CompoundTypeDescription * p = reinterpret_cast< const typelib_CompoundTypeDescription * >(type); for (sal_Int32 i = 0; i < p->nMembers; ++i) { if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT || p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * t = 0; TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]); bool b = is_complex_struct(t); TYPELIB_DANGER_RELEASE(t); if (b) { return true; } } else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass)) return true; } if (p->pBaseTypeDescription != 0) return is_complex_struct(&p->pBaseTypeDescription->aBase); return false; } bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef ) { if (bridges::cpp_uno::shared::isSimpleType(pTypeRef)) return false; else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef ); //A Composite Type not larger than 4 bytes is returned in r0 bool bRet = pTypeDescr->nSize > 4 || is_complex_struct(pTypeDescr); TYPELIB_DANGER_RELEASE( pTypeDescr ); return bRet; } return true; } } void MapReturn(sal_uInt32 r0, sal_uInt32 r1, typelib_TypeDescriptionReference * pReturnType, sal_uInt32* pRegisterReturn) { #if !defined(__ARM_EABI__) && !defined(__SOFTFP__) register float fret asm("f0"); register double dret asm("f0"); #endif switch( pReturnType->eTypeClass ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: pRegisterReturn[1] = r1; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: pRegisterReturn[0] = r0; break; case typelib_TypeClass_FLOAT: #if defined(__ARM_EABI__) || defined(__SOFTFP__) pRegisterReturn[0] = r0; #else *(float*)pRegisterReturn = fret; #endif break; case typelib_TypeClass_DOUBLE: #if defined(__ARM_EABI__) || defined(__SOFTFP__) pRegisterReturn[1] = r1; pRegisterReturn[0] = r0; #else *(double*)pRegisterReturn = dret; #endif break; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { if (!arm::return_in_hidden_param(pReturnType)) pRegisterReturn[0] = r0; break; } default: break; } } namespace { //================================================================ void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnType, sal_uInt32 *pStack, sal_uInt32 nStack, sal_uInt32 *pGPR, sal_uInt32 nGPR) __attribute__((noinline)); void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnType, sal_uInt32 *pStack, sal_uInt32 nStack, sal_uInt32 *pGPR, sal_uInt32 nGPR) { // never called if (! pThis) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something if ( nStack ) { // 8-bytes aligned sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 8; sal_uInt32 *stack = (sal_uInt32 *) __builtin_alloca( nStackBytes ); memcpy( stack, pStack, nStackBytes ); } // Should not happen, but... if ( nGPR > arm::MAX_GPR_REGS ) nGPR = arm::MAX_GPR_REGS; sal_uInt32 pMethod = *((sal_uInt32*)pThis); pMethod += 4 * nVtableIndex; pMethod = *((sal_uInt32 *)pMethod); typedef void (*FunctionCall )( sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32); FunctionCall pFunc = (FunctionCall)pMethod; (*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3]); sal_uInt32 r0; sal_uInt32 r1; // get return value __asm__ __volatile__ ( "mov %0, r0\n\t" "mov %1, r1\n\t" : "=r" (r0), "=r" (r1) : ); MapReturn(r0, r1, pReturnType, (sal_uInt32*)pRegisterReturn); } } #define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < arm::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #ifdef __ARM_EABI__ #define INSERT_INT64( pSV, nr, pGPR, pDS, pStart, bOverflow ) \ if ( (nr < arm::MAX_GPR_REGS) && (nr % 2) ) \ { \ ++nr; \ } \ if ( nr < arm::MAX_GPR_REGS ) \ { \ pGPR[nr++] = *reinterpret_cast( pSV ); \ pGPR[nr++] = *(reinterpret_cast( pSV ) + 1); \ } \ else \ bOverFlow = true; \ if (bOverFlow) \ { \ if ( (pDS - pStart) % 2) \ { \ ++pDS; \ } \ *pDS++ = reinterpret_cast( pSV )[0]; \ *pDS++ = reinterpret_cast( pSV )[1]; \ } #else #define INSERT_INT64( pSV, nr, pGPR, pDS, pStart, bOverflow ) \ INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow) \ INSERT_INT32( ((sal_uInt32*)pSV)+1, nr, pGPR, pDS, bOverflow) #endif #define INSERT_FLOAT( pSV, nr, pFPR, pDS, bOverflow ) \ INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow) #define INSERT_DOUBLE( pSV, nr, pFPR, pDS, pStart, bOverflow ) \ INSERT_INT64( pSV, nr, pGPR, pDS, pStart, bOverflow ) #define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < arm::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < arm::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); namespace { //======================================================================= static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt32 * pStack = (sal_uInt32 *)__builtin_alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); sal_uInt32 * pStackStart = pStack; sal_uInt32 pGPR[arm::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bOverFlow = false; bool bSimpleReturn = true; if (pReturnTypeDescr) { if (arm::return_in_hidden_param( pReturnTypeRef ) ) bSimpleReturn = false; if (bSimpleReturn) pCppReturn = pUnoReturn; // direct way for simple types else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way INSERT_INT32( &pCppReturn, nGPR, pGPR, pStack, bOverFlow ); } } // push this void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI()) + aVtableSlot.offset; INSERT_INT32( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverFlow ); // stack space OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { // uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: #ifdef CMC_DEBUG fprintf(stderr, "hyper is %lx\n", pCppArgs[nPos]); #endif INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart, bOverFlow ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: #ifdef CMC_DEBUG fprintf(stderr, "long is %x\n", pCppArgs[nPos]); #endif INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart, bOverFlow ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT32( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverFlow ); } } try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, pStackStart, (pStack - pStackStart), pGPR, nGPR); // NO exception occured... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // __asm__ __volatile__ ("sub sp, sp, #2048\n"); // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI); #if OSL_DEBUG_LEVEL > 0 typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; #endif switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" ); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast (pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") ); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; cpp_call( pThis, aVtableSlot, // get, then set method pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" ); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast (pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)( pThis->getBridge()->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } } /* vi:set tabstop=4 shiftwidth=4 expandtab: */