/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ // This is an implementation of the x86-64 ABI as described in 'System V // Application Binary Interface, AMD64 Architecture Processor Supplement' // (http://www.x86-64.org/documentation/abi-0.95.pdf) // // The code in this file is a modification of src/x86/ffi64.c from libffi // (http://sources.redhat.com/libffi/) which is under the following license: /* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2002 Bo Thorsen x86-64 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include "sal/config.h" #include "abi.hxx" #include using namespace x86_64; /* Register class used for passing given 64bit part of the argument. These represent classes as documented by the PS ABI, with the exception of SSESF, SSEDF classes, that are basically SSE class, just gcc will use SF or DFmode move instead of DImode to avoid reformating penalties. Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves whenever possible (upper half does contain padding). */ enum x86_64_reg_class { X86_64_NO_CLASS, X86_64_INTEGER_CLASS, X86_64_INTEGERSI_CLASS, X86_64_SSE_CLASS, X86_64_SSESF_CLASS, X86_64_SSEDF_CLASS, X86_64_SSEUP_CLASS, X86_64_X87_CLASS, X86_64_X87UP_CLASS, X86_64_MEMORY_CLASS }; #define MAX_CLASSES 4 /* x86-64 register passing implementation. See x86-64 ABI for details. Goal of this code is to classify each 8bytes of incoming argument by the register class and assign registers accordingly. */ /* Return the union class of CLASS1 and CLASS2. See the x86-64 PS ABI for details. */ static enum x86_64_reg_class merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) throw () { /* Rule #1: If both classes are equal, this is the resulting class. */ if (class1 == class2) return class1; /* Rule #2: If one of the classes is NO_CLASS, the resulting class is the other class. */ if (class1 == X86_64_NO_CLASS) return class2; if (class2 == X86_64_NO_CLASS) return class1; /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) return X86_64_MEMORY_CLASS; /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) return X86_64_INTEGERSI_CLASS; if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) return X86_64_INTEGER_CLASS; /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS) return X86_64_MEMORY_CLASS; /* Rule #6: Otherwise class SSE is used. */ return X86_64_SSE_CLASS; } /* Classify the argument of type TYPE and mode MODE. CLASSES will be filled by the register class used to pass each word of the operand. The number of words is returned. In case the parameter should be passed in memory, 0 is returned. As a special case for zero sized containers, classes[0] will be NO_CLASS and 1 is returned. See the x86-64 PS ABI for details. */ static int classify_argument( typelib_TypeDescriptionReference *pTypeRef, enum x86_64_reg_class classes[], int byteOffset ) throw () { switch ( pTypeRef->eTypeClass ) { case typelib_TypeClass_VOID: classes[0] = X86_64_NO_CLASS; return 1; case typelib_TypeClass_CHAR: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_ENUM: if ( ( byteOffset % 8 + pTypeRef->pType->nSize ) <= 4 ) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; return 1; case typelib_TypeClass_FLOAT: if ( ( byteOffset % 8 ) == 0 ) classes[0] = X86_64_SSESF_CLASS; else classes[0] = X86_64_SSE_CLASS; return 1; case typelib_TypeClass_DOUBLE: classes[0] = X86_64_SSEDF_CLASS; return 1; /*case LONGDOUBLE: classes[0] = X86_64_X87_CLASS; classes[1] = X86_64_X87UP_CLASS; return 2;*/ case typelib_TypeClass_STRING: case typelib_TypeClass_TYPE: case typelib_TypeClass_ANY: case typelib_TypeClass_TYPEDEF: case typelib_TypeClass_SEQUENCE: case typelib_TypeClass_INTERFACE: return 0; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef ); const int UNITS_PER_WORD = 8; int words = ( pTypeDescr->nSize + UNITS_PER_WORD - 1 ) / UNITS_PER_WORD; enum x86_64_reg_class subclasses[MAX_CLASSES]; /* If the struct is larger than 16 bytes, pass it on the stack. */ if ( pTypeDescr->nSize > 16 ) { TYPELIB_DANGER_RELEASE( pTypeDescr ); return 0; } for ( int i = 0; i < words; i++ ) classes[i] = X86_64_NO_CLASS; const typelib_CompoundTypeDescription *pStruct = reinterpret_cast( pTypeDescr ); /* Merge the fields of structure. */ for ( sal_Int32 nMember = 0; nMember < pStruct->nMembers; ++nMember ) { typelib_TypeDescriptionReference *pTypeInStruct = pStruct->ppTypeRefs[ nMember ]; int offset = byteOffset + pStruct->pMemberOffsets[ nMember ]; int num = classify_argument( pTypeInStruct, subclasses, offset ); if ( num == 0 ) { TYPELIB_DANGER_RELEASE( pTypeDescr ); return 0; } for ( int i = 0; i < num; i++ ) { int pos = offset / 8; classes[i + pos] = merge_classes( subclasses[i], classes[i + pos] ); } } TYPELIB_DANGER_RELEASE( pTypeDescr ); /* Final merger cleanup. */ for ( int i = 0; i < words; i++ ) { /* If one class is MEMORY, everything should be passed in memory. */ if ( classes[i] == X86_64_MEMORY_CLASS ) return 0; /* The X86_64_SSEUP_CLASS should be always preceded by X86_64_SSE_CLASS. */ if ( classes[i] == X86_64_SSEUP_CLASS && ( i == 0 || classes[i - 1] != X86_64_SSE_CLASS ) ) classes[i] = X86_64_SSE_CLASS; /* X86_64_X87UP_CLASS should be preceded by X86_64_X87_CLASS. */ if ( classes[i] == X86_64_X87UP_CLASS && ( i == 0 || classes[i - 1] != X86_64_X87_CLASS ) ) classes[i] = X86_64_SSE_CLASS; } return words; } default: SAL_WARN("bridges", "Unhandled case: pType->eTypeClass == " << pTypeRef->eTypeClass); assert(false); } return 0; /* Never reached. */ } /* Examine the argument and return set number of register required in each class. Return 0 iff parameter should be passed in memory. */ bool x86_64::examine_argument( typelib_TypeDescriptionReference *pTypeRef, bool bInReturn, int &nUsedGPR, int &nUsedSSE ) throw () { enum x86_64_reg_class classes[MAX_CLASSES]; int n; n = classify_argument( pTypeRef, classes, 0 ); if ( n == 0 ) return false; nUsedGPR = 0; nUsedSSE = 0; for ( n--; n >= 0; n-- ) switch ( classes[n] ) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: nUsedGPR++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: nUsedSSE++; break; case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; case X86_64_X87_CLASS: case X86_64_X87UP_CLASS: if ( !bInReturn ) return false; break; default: SAL_WARN("bridges", "Unhandled case: classes[n] == " << classes[n]); assert(false); } return true; } bool x86_64::return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef ) throw () { int g, s; return !examine_argument( pTypeRef, true, g, s ); } void x86_64::fill_struct( typelib_TypeDescriptionReference *pTypeRef, const sal_uInt64 *pGPR, const double *pSSE, void *pStruct ) throw () { enum x86_64_reg_class classes[MAX_CLASSES]; int n; n = classify_argument( pTypeRef, classes, 0 ); sal_uInt64 *pStructAlign = static_cast( pStruct ); for ( n--; n >= 0; n-- ) switch ( classes[n] ) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: *pStructAlign++ = *pGPR++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: *pStructAlign++ = *reinterpret_cast( pSSE++ ); break; default: break; } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */