/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "ExponentialRegressionCurveCalculator.hxx" #include "macros.hxx" #include "RegressionCalculationHelper.hxx" #include #include using namespace ::com::sun::star; namespace chart { ExponentialRegressionCurveCalculator::ExponentialRegressionCurveCalculator() : m_fLogSlope( 0.0 ), m_fLogIntercept( 0.0 ) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); } ExponentialRegressionCurveCalculator::~ExponentialRegressionCurveCalculator() {} // ____ XRegressionCurveCalculator ____ void SAL_CALL ExponentialRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException, std::exception) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndYPositive())); const size_t nMax = aValues.first.size(); if( nMax == 0 ) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient );// actual it is coefficient of determination return; } double fAverageX = 0.0, fAverageY = 0.0; size_t i = 0; for( i = 0; i < nMax; ++i ) { fAverageX += aValues.first[i]; fAverageY += log( aValues.second[i] ); } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = aValues.first[i] - fAverageX; double fDeltaY = log( aValues.second[i] ) - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fLogSlope = fQxy / fQx; m_fLogIntercept = fAverageY - m_fLogSlope * fAverageX; m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy ); } double SAL_CALL ExponentialRegressionCurveCalculator::getCurveValue( double x ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( ::rtl::math::isNan( m_fLogSlope ) || ::rtl::math::isNan( m_fLogIntercept ))) { fResult = exp(m_fLogIntercept + x * m_fLogSlope); } return fResult; } uno::Sequence< geometry::RealPoint2D > SAL_CALL ExponentialRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, sal_Bool bMaySkipPointsInCalculation ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { if( bMaySkipPointsInCalculation && isLinearScaling( xScalingX ) && isLogarithmicScaling( xScalingY )) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = this->getCurveValue( min ); aResult[1].X = max; aResult[1].Y = this->getCurveValue( max ); return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString ExponentialRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, ::sal_Int32 nNumberFormatKey ) const { double fIntercept = exp(m_fLogIntercept); double fSlope = exp(m_fLogSlope); bool bHasSlope = !rtl::math::approxEqual( fSlope, 1.0 ); bool bHasIntercept = !rtl::math::approxEqual( fIntercept, 1.0 ); OUStringBuffer aBuf( "f(x) = "); if ( fIntercept == 0.0) { // underflow, a true zero is impossible aBuf.append( "exp( "); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) ); aBuf.append( (m_fLogSlope < 0.0) ? " - " : " + "); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) ); aBuf.append( " x )"); } else { if (bHasIntercept) { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fIntercept) ); aBuf.append( " exp( "); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) ); aBuf.append( " x )"); } else { // show logarithmic output, if intercept and slope both are near one // otherwise drop output of intercept, which is 1 here aBuf.append( " exp( "); if (!bHasSlope) { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) ); aBuf.append( (m_fLogSlope < 0.0) ? " - " : " + "); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) ); } else { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) ); } aBuf.append( " x )"); } } return aBuf.makeStringAndClear(); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */