/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "ExponentialRegressionCurveCalculator.hxx" #include "macros.hxx" #include "RegressionCalculationHelper.hxx" #include #include #include using namespace ::com::sun::star; namespace chart { ExponentialRegressionCurveCalculator::ExponentialRegressionCurveCalculator() : m_fLogSlope(0.0) , m_fLogIntercept(0.0) , m_fSign(1.0) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); } ExponentialRegressionCurveCalculator::~ExponentialRegressionCurveCalculator() {} // ____ XRegressionCurveCalculator ____ void SAL_CALL ExponentialRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException, std::exception) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndYPositive())); m_fSign = 1.0; size_t nMax = aValues.first.size(); if( nMax <= 1 ) // at least 2 points { aValues = RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndYNegative()); nMax = aValues.first.size(); if( nMax <= 1 ) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient );// actual it is coefficient of determination return; } m_fSign = -1.0; } double fAverageX = 0.0, fAverageY = 0.0; double fLogIntercept = ( mForceIntercept && (m_fSign * mInterceptValue)>0 ) ? log(m_fSign * mInterceptValue) : 0.0; std::vector yVector; yVector.resize(nMax, 0.0); size_t i = 0; for( i = 0; i < nMax; ++i ) { double yValue = log( m_fSign *aValues.second[i] ); if (mForceIntercept) { yValue -= fLogIntercept; } else { fAverageX += aValues.first[i]; fAverageY += yValue; } yVector[i] = yValue; } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = aValues.first[i] - fAverageX; double fDeltaY = yVector[i] - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fLogSlope = fQxy / fQx; m_fLogIntercept = mForceIntercept ? fLogIntercept : fAverageY - m_fLogSlope * fAverageX; m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy ); } double SAL_CALL ExponentialRegressionCurveCalculator::getCurveValue( double x ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( ::rtl::math::isNan( m_fLogSlope ) || ::rtl::math::isNan( m_fLogIntercept ))) { fResult = m_fSign * exp(m_fLogIntercept + x * m_fLogSlope); } return fResult; } uno::Sequence< geometry::RealPoint2D > SAL_CALL ExponentialRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, sal_Bool bMaySkipPointsInCalculation ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { if( bMaySkipPointsInCalculation && isLinearScaling( xScalingX ) && isLogarithmicScaling( xScalingY )) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = this->getCurveValue( min ); aResult[1].X = max; aResult[1].Y = this->getCurveValue( max ); return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString ExponentialRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const { double fIntercept = exp(m_fLogIntercept); bool bHasSlope = !rtl::math::approxEqual( exp(m_fLogSlope), 1.0 ); bool bHasLogSlope = !rtl::math::approxEqual( fabs(m_fLogSlope), 1.0 ); bool bHasIntercept = !rtl::math::approxEqual( fIntercept, 1.0 ) && fIntercept != 0.0; OUStringBuffer aBuf( mYName + " = " ); sal_Int32 nLineLength = aBuf.getLength(); sal_Int32 nValueLength=0; if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 ) { // count characters different from coefficients sal_Int32 nCharMin = nLineLength + 10 + mXName.getLength(); // 10 = "exp( ", " x )" + 2 extra characters if ( m_fSign < 0.0 ) nCharMin += 2; if ( fIntercept == 0.0 || ( !bHasSlope && m_fLogIntercept != 0.0 ) ) nCharMin += 3; // " + " special case where equation is written exp( a + b x ) if ( ( bHasIntercept || fIntercept == 0.0 || ( !bHasSlope && m_fLogIntercept != 0.0 ) ) && bHasLogSlope ) nValueLength = ( *pFormulaMaxWidth - nCharMin ) / 2; else nValueLength = *pFormulaMaxWidth - nCharMin; if ( nValueLength <= 0 ) nValueLength = 1; } // temporary buffer OUStringBuffer aTmpBuf(""); // if nValueLength not calculated then nullptr sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr; if ( m_fSign < 0.0 ) aTmpBuf.append( OUStringLiteral1(aMinusSign) + " " ); if ( bHasIntercept ) { OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fIntercept, pValueLength ); if ( aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small { aTmpBuf.append( aValueString + " " ); addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth ); aTmpBuf.truncate(); } } aTmpBuf.append( "exp( " ); if ( !bHasIntercept ) { if ( fIntercept == 0.0 || // underflow, a true zero is impossible ( !bHasSlope && m_fLogIntercept != 0.0 ) ) // show logarithmic output, if intercept and slope both are near one { // otherwise drop output of intercept, which is 1 here OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept, pValueLength ); if ( aValueString != "0" ) // aValueString may be rounded to 0 if nValueLength is small { aTmpBuf.append( aValueString + ( (m_fLogSlope < 0.0) ? OUStringLiteral(" ") : OUStringLiteral(" + ") ) ); } } } if ( m_fLogSlope < 0.0 ) aTmpBuf.append( OUStringLiteral1(aMinusSign) + " " ); if ( bHasLogSlope ) { OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope), pValueLength ); if ( aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small { aTmpBuf.append( aValueString + " " ); } } aTmpBuf.append( mXName + " )"); addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth ); return aBuf.makeStringAndClear(); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */