/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "MeanValueRegressionCurveCalculator.hxx" #include "macros.hxx" #include #include #include #include using namespace ::com::sun::star; namespace chart { MeanValueRegressionCurveCalculator::MeanValueRegressionCurveCalculator() : m_fMeanValue( 0.0 ) { ::rtl::math::setNan( & m_fMeanValue ); } MeanValueRegressionCurveCalculator::~MeanValueRegressionCurveCalculator() {} // ____ XRegressionCurveCalculator ____ void SAL_CALL MeanValueRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& /*aXValues*/, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException, std::exception) { const sal_Int32 nDataLength = aYValues.getLength(); sal_Int32 nMax = nDataLength; double fSumY = 0.0; const double * pY = aYValues.getConstArray(); for( sal_Int32 i = 0; i < nDataLength; ++i ) { if( ::rtl::math::isNan( pY[i] ) || ::rtl::math::isInf( pY[i] )) --nMax; else fSumY += pY[i]; } m_fCorrelationCoeffitient = 0.0; if( nMax == 0 ) { ::rtl::math::setNan( & m_fMeanValue ); } else { m_fMeanValue = fSumY / static_cast< double >( nMax ); // correlation coefficient: standard deviation if( nMax > 1 ) { double fErrorSum = 0.0; for( sal_Int32 i = 0; i < nDataLength; ++i ) { if( !::rtl::math::isNan( pY[i] ) && !::rtl::math::isInf( pY[i] )) { double v = m_fMeanValue - pY[i]; fErrorSum += (v*v); } } OSL_ASSERT( fErrorSum >= 0.0 ); m_fCorrelationCoeffitient = sqrt( fErrorSum / (nMax - 1 )); } } } double SAL_CALL MeanValueRegressionCurveCalculator::getCurveValue( double /*x*/ ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { return m_fMeanValue; } uno::Sequence< geometry::RealPoint2D > SAL_CALL MeanValueRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, sal_Bool bMaySkipPointsInCalculation ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { if( bMaySkipPointsInCalculation ) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = m_fMeanValue; aResult[1].X = max; aResult[1].Y = m_fMeanValue; return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString MeanValueRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, sal_Int32 nNumberFormatKey, sal_Int32* pFormulaLength /* = nullptr */ ) const { OUString aBuf = OUString(mYName + " = "); if ( pFormulaLength ) { *pFormulaLength -= aBuf.getLength(); if ( *pFormulaLength <= 0 ) return aHashString; } return ( aBuf + getFormattedString( xNumFormatter, nNumberFormatKey, m_fMeanValue, pFormulaLength ) ); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */