/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "PotentialRegressionCurveCalculator.hxx" #include "macros.hxx" #include "RegressionCalculationHelper.hxx" #include #include #include using namespace ::com::sun::star; namespace chart { PotentialRegressionCurveCalculator::PotentialRegressionCurveCalculator() : m_fSlope(0.0) , m_fIntercept(0.0) , m_fSign(1.0) { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); } PotentialRegressionCurveCalculator::~PotentialRegressionCurveCalculator() {} // ____ XRegressionCurveCalculator ____ void SAL_CALL PotentialRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException, std::exception) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndBothPositive())); m_fSign = 1.0; size_t nMax = aValues.first.size(); if( nMax <= 1 ) // at least 2 points { aValues = RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndXPositiveAndYNegative()); nMax = aValues.first.size(); if( nMax <= 1 ) { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient ); return; } m_fSign = -1.0; } double fAverageX = 0.0, fAverageY = 0.0; size_t i = 0; for( i = 0; i < nMax; ++i ) { fAverageX += log( aValues.first[i] ); fAverageY += log( m_fSign * aValues.second[i] ); } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = log( aValues.first[i] ) - fAverageX; double fDeltaY = log( m_fSign * aValues.second[i] ) - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fSlope = fQxy / fQx; m_fIntercept = fAverageY - m_fSlope * fAverageX; m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy ); m_fIntercept = m_fSign * exp( m_fIntercept ); } double SAL_CALL PotentialRegressionCurveCalculator::getCurveValue( double x ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( ::rtl::math::isNan( m_fSlope ) || ::rtl::math::isNan( m_fIntercept ))) { fResult = m_fIntercept * pow( x, m_fSlope ); } return fResult; } uno::Sequence< geometry::RealPoint2D > SAL_CALL PotentialRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, sal_Bool bMaySkipPointsInCalculation ) throw (lang::IllegalArgumentException, uno::RuntimeException, std::exception) { if( bMaySkipPointsInCalculation && isLogarithmicScaling( xScalingX ) && isLogarithmicScaling( xScalingY )) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = this->getCurveValue( min ); aResult[1].X = max; aResult[1].Y = this->getCurveValue( max ); return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString PotentialRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const { bool bHasIntercept = !rtl::math::approxEqual( fabs(m_fIntercept), 1.0 ); OUStringBuffer aBuf( mYName + " = " ); sal_Int32 nLineLength = aBuf.getLength(); sal_Int32 nValueLength=0; if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 ) // count nValueLength { sal_Int32 nCharMin = nLineLength + mXName.getLength() + 3; // 3 = "^" + 2 extra characters if ( m_fIntercept != 0.0 && m_fSlope != 0.0 ) { if ( m_fIntercept < 0.0 ) nCharMin += 2; // "- " if ( bHasIntercept ) nValueLength = (*pFormulaMaxWidth - nCharMin) / 2; } if ( nValueLength == 0 ) // not yet calculated nValueLength = *pFormulaMaxWidth - nCharMin; if ( nValueLength <= 0 ) nValueLength = 1; } if( m_fIntercept == 0.0 ) { aBuf.append( '0' ); } else { // temporary buffer OUStringBuffer aTmpBuf(""); // if nValueLength not calculated then nullptr sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr; if ( m_fIntercept < 0.0 ) // add intercept value aTmpBuf.append( OUStringLiteral1(aMinusSign)+" " ); if( bHasIntercept ) { OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fIntercept), pValueLength ); if ( aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small { aTmpBuf.append( aValueString + " " ); } } if( m_fSlope != 0.0 ) // add slope value { aTmpBuf.append( mXName + "^" ); aTmpBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fSlope, pValueLength )); } addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth ); } return aBuf.makeStringAndClear(); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */