/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include namespace chart { using namespace ::com::sun::star; using namespace ::com::sun::star::chart2; XTransformation2::~XTransformation2() {} PlottingPositionHelper::PlottingPositionHelper() : m_bSwapXAndY( false ) , m_nXResolution( 1000 ) , m_nYResolution( 1000 ) , m_nZResolution( 1000 ) , m_bMaySkipPointsInRegressionCalculation( true ) , m_bDateAxis(false) , m_nTimeResolution( css::chart::TimeUnit::DAY ) , m_aNullDate(30,12,1899) , m_fScaledCategoryWidth(1.0) , m_bAllowShiftXAxisPos(false) , m_bAllowShiftZAxisPos(false) { } PlottingPositionHelper::PlottingPositionHelper( const PlottingPositionHelper& rSource ) : m_aScales( rSource.m_aScales ) , m_aMatrixScreenToScene( rSource.m_aMatrixScreenToScene ) // m_xTransformationLogicToScene( nullptr ) //should be recalculated , m_bSwapXAndY( rSource.m_bSwapXAndY ) , m_nXResolution( rSource.m_nXResolution ) , m_nYResolution( rSource.m_nYResolution ) , m_nZResolution( rSource.m_nZResolution ) , m_bMaySkipPointsInRegressionCalculation( rSource.m_bMaySkipPointsInRegressionCalculation ) , m_bDateAxis( rSource.m_bDateAxis ) , m_nTimeResolution( rSource.m_nTimeResolution ) , m_aNullDate( rSource.m_aNullDate ) , m_fScaledCategoryWidth( rSource.m_fScaledCategoryWidth ) , m_bAllowShiftXAxisPos( rSource.m_bAllowShiftXAxisPos ) , m_bAllowShiftZAxisPos( rSource.m_bAllowShiftZAxisPos ) { } PlottingPositionHelper::~PlottingPositionHelper() { } std::unique_ptr PlottingPositionHelper::clone() const { return std::make_unique(*this); } std::unique_ptr PlottingPositionHelper::createSecondaryPosHelper( const ExplicitScaleData& rSecondaryScale ) { auto pRet = clone(); pRet->m_aScales[1]=rSecondaryScale; return pRet; } void PlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix) { m_aMatrixScreenToScene = HomogenMatrixToB3DHomMatrix(rMatrix); m_xTransformationLogicToScene = nullptr; } void PlottingPositionHelper::setScales( std::vector< ExplicitScaleData >&& rScales, bool bSwapXAndYAxis ) { m_aScales = std::move(rScales); m_bSwapXAndY = bSwapXAndYAxis; m_xTransformationLogicToScene = nullptr; } ::chart::XTransformation2* PlottingPositionHelper::getTransformationScaledLogicToScene() const { //this is a standard transformation for a cartesian coordinate system //transformation from 2) to 4) //@todo 2) and 4) need an ink to a document //we need to apply this transformation to each geometric object because of a bug/problem //of the old drawing layer (the UNO_NAME_3D_EXTRUDE_DEPTH is an integer value instead of a double ) if(!m_xTransformationLogicToScene) { ::basegfx::B3DHomMatrix aMatrix; double MinX = getLogicMinX(); double MinY = getLogicMinY(); double MinZ = getLogicMinZ(); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); double MaxZ = getLogicMaxZ(); AxisOrientation nXAxisOrientation = m_aScales[0].Orientation; AxisOrientation nYAxisOrientation = m_aScales[1].Orientation; AxisOrientation nZAxisOrientation = m_aScales[2].Orientation; //apply scaling doUnshiftedLogicScaling( &MinX, &MinY, &MinZ ); doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ); if(m_bSwapXAndY) { std::swap(MinX,MinY); std::swap(MaxX,MaxY); std::swap(nXAxisOrientation,nYAxisOrientation); } double fWidthX = MaxX - MinX; double fWidthY = MaxY - MinY; double fWidthZ = MaxZ - MinZ; double fScaleDirectionX = nXAxisOrientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0; double fScaleDirectionY = nYAxisOrientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0; double fScaleDirectionZ = nZAxisOrientation==AxisOrientation_MATHEMATICAL ? -1.0 : 1.0; double fScaleX = fScaleDirectionX*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthX; double fScaleY = fScaleDirectionY*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthY; double fScaleZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ; aMatrix.scale(fScaleX, fScaleY, fScaleZ); if( nXAxisOrientation==AxisOrientation_MATHEMATICAL ) aMatrix.translate(-MinX*fScaleX, 0.0, 0.0); else aMatrix.translate(-MaxX*fScaleX, 0.0, 0.0); if( nYAxisOrientation==AxisOrientation_MATHEMATICAL ) aMatrix.translate(0.0, -MinY*fScaleY, 0.0); else aMatrix.translate(0.0, -MaxY*fScaleY, 0.0); if( nZAxisOrientation==AxisOrientation_MATHEMATICAL ) aMatrix.translate(0.0, 0.0, -MaxZ*fScaleZ);//z direction in draw is reverse mathematical direction else aMatrix.translate(0.0, 0.0, -MinZ*fScaleZ); aMatrix = m_aMatrixScreenToScene*aMatrix; m_xTransformationLogicToScene.reset(new Linear3DTransformation(B3DHomMatrixToHomogenMatrix( aMatrix ), m_bSwapXAndY)); } return m_xTransformationLogicToScene.get(); } drawing::Position3D PlottingPositionHelper::transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const { doLogicScaling( &fX,&fY,&fZ ); if(bClip) clipScaledLogicValues( &fX,&fY,&fZ ); return transformScaledLogicToScene( fX, fY, fZ, false ); } drawing::Position3D PlottingPositionHelper::transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const { if( bClip ) clipScaledLogicValues( &fX,&fY,&fZ ); drawing::Position3D aPos( fX, fY, fZ); ::chart::XTransformation2* pTransformation = getTransformationScaledLogicToScene(); return pTransformation->transform( aPos ); } awt::Point PlottingPositionHelper::transformSceneToScreenPosition( const drawing::Position3D& rScenePosition3D , const rtl::Reference& xSceneTarget , sal_Int32 nDimensionCount ) { //@todo would like to have a cheaper method to do this transformation awt::Point aScreenPoint( static_cast(rScenePosition3D.PositionX), static_cast(rScenePosition3D.PositionY) ); //transformation from scene to screen (only necessary for 3D): if(nDimensionCount==3) { //create 3D anchor shape tPropertyNameMap aDummyPropertyNameMap; rtl::Reference xShape3DAnchor = ShapeFactory::createCube( xSceneTarget , rScenePosition3D,drawing::Direction3D(1,1,1) , 0, nullptr, aDummyPropertyNameMap); //get 2D position from xShape3DAnchor aScreenPoint = xShape3DAnchor->getPosition(); xSceneTarget->remove(xShape3DAnchor); } return aScreenPoint; } void PlottingPositionHelper::transformScaledLogicToScene( drawing::PolyPolygonShape3D& rPolygon ) const { drawing::Position3D aScenePosition; auto SequenceXRange = asNonConstRange(rPolygon.SequenceX); auto SequenceYRange = asNonConstRange(rPolygon.SequenceY); auto SequenceZRange = asNonConstRange(rPolygon.SequenceZ); for( sal_Int32 nS = rPolygon.SequenceX.getLength(); nS--;) { auto xValuesRange = asNonConstRange(SequenceXRange[nS]); auto yValuesRange = asNonConstRange(SequenceYRange[nS]); auto zValuesRange = asNonConstRange(SequenceZRange[nS]); for( sal_Int32 nP = SequenceXRange[nS].getLength(); nP--; ) { double& fX = xValuesRange[nP]; double& fY = yValuesRange[nP]; double& fZ = zValuesRange[nP]; aScenePosition = transformScaledLogicToScene( fX,fY,fZ,true ); fX = aScenePosition.PositionX; fY = aScenePosition.PositionY; fZ = aScenePosition.PositionZ; } } } void PlottingPositionHelper::transformScaledLogicToScene( std::vector>& rPolygon ) const { drawing::Position3D aScenePosition; for( sal_Int32 nS = static_cast(rPolygon.size()); nS--;) { auto valuesRange = rPolygon[nS].data(); for( sal_Int32 nP = rPolygon[nS].size(); nP--; ) { double& fX = valuesRange[nP].PositionX; double& fY = valuesRange[nP].PositionY; double& fZ = valuesRange[nP].PositionZ; aScenePosition = transformScaledLogicToScene( fX,fY,fZ,true ); fX = aScenePosition.PositionX; fY = aScenePosition.PositionY; fZ = aScenePosition.PositionZ; } } } void PlottingPositionHelper::clipScaledLogicValues( double* pX, double* pY, double* pZ ) const { //get logic clip values: double MinX = getLogicMinX(); double MinY = getLogicMinY(); double MinZ = getLogicMinZ(); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); double MaxZ = getLogicMaxZ(); //apply scaling doUnshiftedLogicScaling( &MinX, &MinY, &MinZ ); doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ); if(pX) { if( *pX < MinX ) *pX = MinX; else if( *pX > MaxX ) *pX = MaxX; } if(pY) { if( *pY < MinY ) *pY = MinY; else if( *pY > MaxY ) *pY = MaxY; } if(pZ) { if( *pZ < MinZ ) *pZ = MinZ; else if( *pZ > MaxZ ) *pZ = MaxZ; } } basegfx::B2DRectangle PlottingPositionHelper::getScaledLogicClipDoubleRect() const { //get logic clip values: double MinX = getLogicMinX(); double MinY = getLogicMinY(); double MinZ = getLogicMinZ(); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); double MaxZ = getLogicMaxZ(); //apply scaling doUnshiftedLogicScaling( &MinX, &MinY, &MinZ ); doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ); basegfx::B2DRectangle aRet( MinX, MaxY, MaxX, MinY ); return aRet; } drawing::Direction3D PlottingPositionHelper::getScaledLogicWidth() const { drawing::Direction3D aRet; double MinX = getLogicMinX(); double MinY = getLogicMinY(); double MinZ = getLogicMinZ(); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); double MaxZ = getLogicMaxZ(); doLogicScaling( &MinX, &MinY, &MinZ ); doLogicScaling( &MaxX, &MaxY, &MaxZ); aRet.DirectionX = MaxX - MinX; aRet.DirectionY = MaxY - MinY; aRet.DirectionZ = MaxZ - MinZ; return aRet; } PolarPlottingPositionHelper::PolarPlottingPositionHelper() : m_fRadiusOffset(0.0) , m_fAngleDegreeOffset(90.0) { m_bMaySkipPointsInRegressionCalculation = false; } PolarPlottingPositionHelper::PolarPlottingPositionHelper( const PolarPlottingPositionHelper& rSource ) : PlottingPositionHelper(rSource) , m_fRadiusOffset( rSource.m_fRadiusOffset ) , m_fAngleDegreeOffset( rSource.m_fAngleDegreeOffset ) , m_aUnitCartesianToScene( rSource.m_aUnitCartesianToScene ) { } PolarPlottingPositionHelper::~PolarPlottingPositionHelper() { } std::unique_ptr PolarPlottingPositionHelper::clone() const { return std::make_unique(*this); } void PolarPlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix) { PlottingPositionHelper::setTransformationSceneToScreen( rMatrix); m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene ); } void PolarPlottingPositionHelper::setScales( std::vector< ExplicitScaleData >&& rScales, bool bSwapXAndYAxis ) { PlottingPositionHelper::setScales( std::move(rScales), bSwapXAndYAxis ); m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene ); } ::basegfx::B3DHomMatrix PolarPlottingPositionHelper::impl_calculateMatrixUnitCartesianToScene( const ::basegfx::B3DHomMatrix& rMatrixScreenToScene ) const { ::basegfx::B3DHomMatrix aRet; if( m_aScales.empty() ) return aRet; double fTranslate =1.0; double fScale =FIXED_SIZE_FOR_3D_CHART_VOLUME/2.0; double fTranslateLogicZ; double fScaleLogicZ; { double fScaleDirectionZ = m_aScales[2].Orientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0; double MinZ = getLogicMinZ(); double MaxZ = getLogicMaxZ(); doLogicScaling( nullptr, nullptr, &MinZ ); doLogicScaling( nullptr, nullptr, &MaxZ ); double fWidthZ = MaxZ - MinZ; if( m_aScales[2].Orientation==AxisOrientation_MATHEMATICAL ) fTranslateLogicZ=MinZ; else fTranslateLogicZ=MaxZ; fScaleLogicZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ; } double fTranslateX = fTranslate; double fTranslateY = fTranslate; double fTranslateZ = fTranslateLogicZ; double fScaleX = fScale; double fScaleY = fScale; double fScaleZ = fScaleLogicZ; aRet.translate(fTranslateX, fTranslateY, fTranslateZ);//x first aRet.scale(fScaleX, fScaleY, fScaleZ);//x first aRet = rMatrixScreenToScene * aRet; return aRet; } ::chart::XTransformation2* PolarPlottingPositionHelper::getTransformationScaledLogicToScene() const { if( !m_xTransformationLogicToScene ) m_xTransformationLogicToScene.reset(new VPolarTransformation(*this)); return m_xTransformationLogicToScene.get(); } double PolarPlottingPositionHelper::getWidthAngleDegree( double& fStartLogicValueOnAngleAxis, double& fEndLogicValueOnAngleAxis ) const { const ExplicitScaleData& rAngleScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0]; if( rAngleScale.Orientation != AxisOrientation_MATHEMATICAL ) std::swap( fStartLogicValueOnAngleAxis, fEndLogicValueOnAngleAxis ); double fStartAngleDegree = transformToAngleDegree( fStartLogicValueOnAngleAxis ); double fEndAngleDegree = transformToAngleDegree( fEndLogicValueOnAngleAxis ); double fWidthAngleDegree = fEndAngleDegree - fStartAngleDegree; if( ::rtl::math::approxEqual( fStartAngleDegree, fEndAngleDegree ) && !::rtl::math::approxEqual( fStartLogicValueOnAngleAxis, fEndLogicValueOnAngleAxis ) ) fWidthAngleDegree = 360.0; // tdf#123504: both 0 and 360 are valid and different values here! while (fWidthAngleDegree < 0.0) fWidthAngleDegree += 360.0; while (fWidthAngleDegree > 360.0) fWidthAngleDegree -= 360.0; return fWidthAngleDegree; } //This method does a lot of computation for understanding which scale to //utilize and if reverse orientation should be used. Indeed, for a pie or donut, //the final result is as simple as multiplying by 360 and adding //`m_fAngleDegreeOffset`. double PolarPlottingPositionHelper::transformToAngleDegree( double fLogicValueOnAngleAxis, bool bDoScaling ) const { double fRet=0.0; double fAxisAngleScaleDirection = 1.0; { const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0]; if(rScale.Orientation != AxisOrientation_MATHEMATICAL) fAxisAngleScaleDirection *= -1.0; } double MinAngleValue = 0.0; double MaxAngleValue = 0.0; { double MinX = getLogicMinX(); double MinY = getLogicMinY(); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); double MinZ = getLogicMinZ(); double MaxZ = getLogicMaxZ(); doLogicScaling( &MinX, &MinY, &MinZ ); doLogicScaling( &MaxX, &MaxY, &MaxZ); MinAngleValue = m_bSwapXAndY ? MinY : MinX; MaxAngleValue = m_bSwapXAndY ? MaxY : MaxX; } double fScaledLogicAngleValue = 0.0; if(bDoScaling) { double fX = m_bSwapXAndY ? getLogicMaxX() : fLogicValueOnAngleAxis; double fY = m_bSwapXAndY ? fLogicValueOnAngleAxis : getLogicMaxY(); double fZ = getLogicMaxZ(); clipLogicValues( &fX, &fY, &fZ ); doLogicScaling( &fX, &fY, &fZ ); fScaledLogicAngleValue = m_bSwapXAndY ? fY : fX; } else fScaledLogicAngleValue = fLogicValueOnAngleAxis; fRet = m_fAngleDegreeOffset + fAxisAngleScaleDirection*(fScaledLogicAngleValue-MinAngleValue)*360.0 /fabs(MaxAngleValue-MinAngleValue); // tdf#123504: both 0 and 360 are valid and different values here! while (fRet > 360.0) fRet -= 360.0; while (fRet < 0) fRet += 360.0; return fRet; } /** * Given a value in the radius axis scale range, it returns, in the simplest * case (that is when `m_fRadiusOffset` is zero), the normalized value; when * `m_fRadiusOffset` is not zero (e.g. as in the case of a donut), the interval * used for normalization is extended by `m_fRadiusOffset`: if the axis * orientation is not reversed the new interval becomes * [scale.Minimum - m_fRadiusOffset, scale.Maximum] else it becomes * [scale.Minimum, scale.Maximum + m_fRadiusOffset]. * Pay attention here! For the latter case, since the axis orientation is * reversed, the normalization is reversed too. Indeed, we have * `transformToRadius(scale.Maximum + m_fRadiusOffset) = 0` and * `transformToRadius(scale.Minimum) = 1`. * * For a pie chart the radius axis scale range is initialized by the * `getMinimum` and `getMaximum` methods of the `PieChart` object (see notes * for `VCoordinateSystem::prepareAutomaticAxisScaling`). * So we have scale.Minimum = 0.5 (always constant!) and * scale.Maximum = 0.5 + number_of_rings + max_offset * (see notes for `PieChart::getMaxOffset`). * Hence we get the following general formulas for computing normalized inner * and outer radius: * * 1- transformToRadius(inner_radius) = * (number_of_rings - (ring_index + 1) + m_fRadiusOffset) * / (number_of_rings + max_offset + m_fRadiusOffset) * * 2- transformToRadius(outer_radius) = * (1 + number_of_rings - (ring_index + 1) + m_fRadiusOffset) * / (number_of_rings + max_offset + m_fRadiusOffset). * * Here you have to take into account that values for inner and outer radius * are swapped since the radius axis is reversed (See notes for * `PiePositionHelper::getInnerAndOuterRadius`). So indeed inner_radius is * the outer and outer_radius is the inner. Anyway still because of the reverse * orientation, the normalization performed by `transformToRadius` is reversed * too, as we have seen above. Hence `transformToRadius(inner_radius)` is * really the normalized inner radius and `transformToRadius(outer_radius)` is * really the normalized outer radius. * * Some basic examples where we apply the above formulas: * 1- For a non-exploded pie chart we have: * `transformToRadius(inner_radius) = 0`, * `transformToRadius(outer_radius) = 1`. * 2- For a non-exploded donut with a single ring we have: * `transformToRadius(inner_radius) = * m_fRadiusOffset/(1 + m_fRadiusOffset)`, * `transformToRadius(outer_radius) = * (1 + m_fRadiusOffset)/(1 + m_fRadiusOffset) = 1`. * 3- For an exploded pie chart we have: * `transformToRadius(inner_radius) = 0/(1 + max_offset) = 0`, * `transformToRadius(outer_radius) = 1/(1 + max_offset)`. * * The third example needs some remark. Both the logical inner and outer * radius passed to `transformToRadius` are offset by `max_offset`. * However the returned normalized values do not contain any (normalized) * offset term at all, otherwise the returned values would be * `max_offset/(1 + max_offset)` and `1`. Hence, for exploded pie/donut, * `transformToRadius` returns the normalized value of radii without any * offset term. These values are smaller than in the non-exploded case by an * amount equals to the value of the normalized maximum offset * (`max_offset/(1 + max_offset)` in the example above). That is due to the * fact that the normalization keeps into account the space needed for the * offset. This is the correct behavior, in fact the offset for the current * slice could be different from the maximum offset. * These remarks should clarify why the `PieChart::createDataPoint` and * `PieChart::createTextLabelShape` methods add the normalized offset (for the * current slice) to the normalized radii in order to achieve the correct * placement of slice and text shapes. */ double PolarPlottingPositionHelper::transformToRadius( double fLogicValueOnRadiusAxis, bool bDoScaling ) const { double fNormalRadius = 0.0; { double fScaledLogicRadiusValue = 0.0; double fX = m_bSwapXAndY ? fLogicValueOnRadiusAxis: getLogicMaxX(); double fY = m_bSwapXAndY ? getLogicMaxY() : fLogicValueOnRadiusAxis; if(bDoScaling) doLogicScaling( &fX, &fY, nullptr ); fScaledLogicRadiusValue = m_bSwapXAndY ? fX : fY; bool bMinIsInnerRadius = true; const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1]; if(rScale.Orientation != AxisOrientation_MATHEMATICAL) bMinIsInnerRadius = false; double fInnerScaledLogicRadius=0.0; double fOuterScaledLogicRadius=0.0; { double MinX = getLogicMinX(); double MinY = getLogicMinY(); doLogicScaling( &MinX, &MinY, nullptr ); double MaxX = getLogicMaxX(); double MaxY = getLogicMaxY(); doLogicScaling( &MaxX, &MaxY, nullptr ); double fMin = m_bSwapXAndY ? MinX : MinY; double fMax = m_bSwapXAndY ? MaxX : MaxY; fInnerScaledLogicRadius = bMinIsInnerRadius ? fMin : fMax; fOuterScaledLogicRadius = bMinIsInnerRadius ? fMax : fMin; } if( bMinIsInnerRadius ) fInnerScaledLogicRadius -= fabs(m_fRadiusOffset); else fInnerScaledLogicRadius += fabs(m_fRadiusOffset); fNormalRadius = (fScaledLogicRadiusValue-fInnerScaledLogicRadius)/(fOuterScaledLogicRadius-fInnerScaledLogicRadius); } return fNormalRadius; } drawing::Position3D PolarPlottingPositionHelper::transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const { if(bClip) clipLogicValues( &fX,&fY,&fZ ); double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX; double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY; return transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ ); } drawing::Position3D PolarPlottingPositionHelper::transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const { if(bClip) clipScaledLogicValues( &fX,&fY,&fZ ); double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX; double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY; return transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ, false ); } drawing::Position3D PolarPlottingPositionHelper::transformUnitCircleToScene( double fUnitAngleDegree, double fUnitRadius , double fLogicZ ) const { double fAnglePi = basegfx::deg2rad(fUnitAngleDegree); double fX=fUnitRadius*std::cos(fAnglePi); double fY=fUnitRadius*std::sin(fAnglePi); double fZ=fLogicZ; //!! applying matrix to vector does ignore translation, so it is important to use a B3DPoint here instead of B3DVector ::basegfx::B3DPoint aPoint(fX,fY,fZ); ::basegfx::B3DPoint aRet = m_aUnitCartesianToScene * aPoint; return B3DPointToPosition3D(aRet); } drawing::Position3D PolarPlottingPositionHelper::transformAngleRadiusToScene( double fLogicValueOnAngleAxis, double fLogicValueOnRadiusAxis, double fLogicZ, bool bDoScaling ) const { double fUnitAngleDegree = transformToAngleDegree(fLogicValueOnAngleAxis,bDoScaling); double fUnitRadius = transformToRadius(fLogicValueOnRadiusAxis,bDoScaling); return transformUnitCircleToScene( fUnitAngleDegree, fUnitRadius, fLogicZ ); } double PolarPlottingPositionHelper::getOuterLogicRadius() const { const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1]; if( rScale.Orientation==AxisOrientation_MATHEMATICAL ) return rScale.Maximum; else return rScale.Minimum; } bool PlottingPositionHelper::isPercentY() const { return m_aScales[1].AxisType==AxisType::PERCENT; } double PlottingPositionHelper::getBaseValueY() const { return m_aScales[1].Origin; } void PlottingPositionHelper::setTimeResolution( tools::Long nTimeResolution, const Date& rNullDate ) { m_nTimeResolution = nTimeResolution; m_aNullDate = rNullDate; //adapt category width double fCategoryWidth = 1.0; if( !m_aScales.empty() ) { if( m_aScales[0].AxisType == css::chart2::AxisType::DATE ) { m_bDateAxis = true; if( nTimeResolution == css::chart::TimeUnit::YEAR ) { const double fMonthCount = 12.0;//todo: this depends on the DateScaling and must be adjusted in case we use more generic calendars in future fCategoryWidth = fMonthCount; } } } setScaledCategoryWidth(fCategoryWidth); } void PlottingPositionHelper::setScaledCategoryWidth( double fScaledCategoryWidth ) { m_fScaledCategoryWidth = fScaledCategoryWidth; } void PlottingPositionHelper::AllowShiftXAxisPos( bool bAllowShift ) { m_bAllowShiftXAxisPos = bAllowShift; } void PlottingPositionHelper::AllowShiftZAxisPos( bool bAllowShift ) { m_bAllowShiftZAxisPos = bAllowShift; } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */