/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include "plugin.hxx" /** Look for fields that are only ever assigned a single constant value. We dmp a list of values assigned to fields, and a list of field definitions. Then we will post-process the 2 lists and find the set of interesting fields. Be warned that it produces around 5G of log file. The process goes something like this: $ make check $ make FORCE_COMPILE_ALL=1 COMPILER_PLUGIN_TOOL='singlevalfields' check $ ./compilerplugins/clang/singlevalfields.py Note that the actual process may involve a fair amount of undoing, hand editing, and general messing around to get it to work :-) @TODO we don't spot fields that have been zero-initialised via calloc or rtl_allocateZeroMemory or memset @TODO calls to lambdas where a reference to the field is taken */ namespace { struct MyFieldInfo { std::string parentClass; std::string fieldName; std::string fieldType; std::string sourceLocation; }; bool operator < (const MyFieldInfo &lhs, const MyFieldInfo &rhs) { return std::tie(lhs.parentClass, lhs.fieldName) < std::tie(rhs.parentClass, rhs.fieldName); } struct MyFieldAssignmentInfo : public MyFieldInfo { std::string value; }; bool operator < (const MyFieldAssignmentInfo &lhs, const MyFieldAssignmentInfo &rhs) { return std::tie(lhs.parentClass, lhs.fieldName, lhs.value) < std::tie(rhs.parentClass, rhs.fieldName, rhs.value); } // try to limit the voluminous output a little static std::set assignedSet; static std::set definitionSet; class SingleValFields: public RecursiveASTVisitor, public loplugin::Plugin { public: explicit SingleValFields(loplugin::InstantiationData const & data): Plugin(data) {} virtual void run() override { TraverseDecl(compiler.getASTContext().getTranslationUnitDecl()); // dump all our output in one write call - this is to try and limit IO "crosstalk" between multiple processes // writing to the same logfile std::string output; for (const MyFieldAssignmentInfo & s : assignedSet) output += "asgn:\t" + s.parentClass + "\t" + s.fieldName + "\t" + s.value + "\n"; for (const MyFieldInfo & s : definitionSet) output += "defn:\t" + s.parentClass + "\t" + s.fieldName + "\t" + s.fieldType + "\t" + s.sourceLocation + "\n"; std::ofstream myfile; myfile.open( WORKDIR "/loplugin.singlevalfields.log", std::ios::app | std::ios::out); myfile << output; myfile.close(); } bool shouldVisitTemplateInstantiations () const { return true; } // to catch compiler-generated constructors bool shouldVisitImplicitCode() const { return true; } bool VisitFieldDecl( const FieldDecl* ); bool VisitMemberExpr( const MemberExpr* ); bool VisitCXXConstructorDecl( const CXXConstructorDecl* ); bool VisitImplicitCastExpr( const ImplicitCastExpr* ); // bool VisitUnaryExprOrTypeTraitExpr( const UnaryExprOrTypeTraitExpr* ); private: void niceName(const FieldDecl*, MyFieldInfo&); std::string getExprValue(const Expr*); const FunctionDecl* get_top_FunctionDecl_from_Stmt(const Stmt&); void checkCallExpr(const Stmt* child, const CallExpr* callExpr, std::string& assignValue, bool& bPotentiallyAssignedTo); void markAllFields(const RecordDecl* recordDecl); }; void SingleValFields::niceName(const FieldDecl* fieldDecl, MyFieldInfo& aInfo) { aInfo.parentClass = fieldDecl->getParent()->getQualifiedNameAsString(); aInfo.fieldName = fieldDecl->getNameAsString(); aInfo.fieldType = fieldDecl->getType().getAsString(); SourceLocation expansionLoc = compiler.getSourceManager().getExpansionLoc( fieldDecl->getLocation() ); StringRef name = compiler.getSourceManager().getFilename(expansionLoc); aInfo.sourceLocation = std::string(name.substr(strlen(SRCDIR)+1)) + ":" + std::to_string(compiler.getSourceManager().getSpellingLineNumber(expansionLoc)); loplugin::normalizeDotDotInFilePath(aInfo.sourceLocation); } bool SingleValFields::VisitFieldDecl( const FieldDecl* fieldDecl ) { fieldDecl = fieldDecl->getCanonicalDecl(); const FieldDecl* canonicalDecl = fieldDecl; if( ignoreLocation( fieldDecl ) || isInUnoIncludeFile( compiler.getSourceManager().getSpellingLoc(fieldDecl->getLocation())) ) return true; MyFieldInfo aInfo; niceName(canonicalDecl, aInfo); definitionSet.insert(aInfo); return true; } bool SingleValFields::VisitCXXConstructorDecl( const CXXConstructorDecl* decl ) { if( ignoreLocation( decl ) ) return true; // doesn't count as a write to fields because it's self->self if (decl->isCopyOrMoveConstructor()) return true; for(auto it = decl->init_begin(); it != decl->init_end(); ++it) { const CXXCtorInitializer* init = *it; const FieldDecl* fieldDecl = init->getMember(); if( !fieldDecl ) continue; MyFieldAssignmentInfo aInfo; niceName(fieldDecl, aInfo); const Expr * expr = init->getInit(); // unwrap any single-arg constructors, this helps to find smart pointers // that are only assigned nullptr if (auto cxxConstructExpr = dyn_cast(expr)) if (cxxConstructExpr->getNumArgs() == 1) expr = cxxConstructExpr->getArg(0); aInfo.value = getExprValue(expr); assignedSet.insert(aInfo); } return true; } /** * Check for calls to methods where a pointer to something is cast to a pointer to void. * At which case it could have anything written to it. */ bool SingleValFields::VisitImplicitCastExpr( const ImplicitCastExpr* castExpr ) { QualType qt = castExpr->getType().getDesugaredType(compiler.getASTContext()); if (qt.isNull()) { return true; } if ( qt.isConstQualified() || !qt->isPointerType() || !qt->getAs()->getPointeeType()->isVoidType() ) { return true; } const Expr* subExpr = castExpr->getSubExpr(); qt = subExpr->getType(); if (!qt->isPointerType()) { return true; } qt = qt->getPointeeType(); if (!qt->isRecordType()) { return true; } const RecordDecl* recordDecl = qt->getAs()->getDecl(); markAllFields(recordDecl); return true; } void SingleValFields::markAllFields(const RecordDecl* recordDecl) { for(auto fieldDecl = recordDecl->field_begin(); fieldDecl != recordDecl->field_end(); ++fieldDecl) { MyFieldAssignmentInfo aInfo; niceName(*fieldDecl, aInfo); aInfo.value = "?"; assignedSet.insert(aInfo); } const CXXRecordDecl* cxxRecordDecl = dyn_cast(recordDecl); if (!cxxRecordDecl || !cxxRecordDecl->hasDefinition()) { return; } for (auto it = cxxRecordDecl->bases_begin(); it != cxxRecordDecl->bases_end(); ++it) { QualType qt = it->getType(); if (qt->isRecordType()) markAllFields(qt->getAs()->getDecl()); } } /** * Check for usage of sizeof(T) where T is a record. * Means we can't touch the size of the class by removing fields. * * @FIXME this could be tightened up. In some contexts e.g. "memset(p,sizeof(T),0)" we could emit a "set to zero" */ /* bool SingleValFields::VisitUnaryExprOrTypeTraitExpr( const UnaryExprOrTypeTraitExpr* expr ) { if (expr->getKind() != UETT_SizeOf || !expr->isArgumentType()) { return true; } QualType qt = expr->getArgumentType(); if (!qt->isRecordType()) { return true; } const RecordDecl* recordDecl = qt->getAs()->getDecl(); markAllFields(recordDecl); return true; } */ bool SingleValFields::VisitMemberExpr( const MemberExpr* memberExpr ) { const ValueDecl* decl = memberExpr->getMemberDecl(); const FieldDecl* fieldDecl = dyn_cast(decl); if (!fieldDecl) { return true; } if (ignoreLocation(memberExpr)) return true; const FunctionDecl* parentFunction = getParentFunctionDecl(memberExpr); if (parentFunction) { auto methodDecl = dyn_cast(parentFunction); if (methodDecl && (methodDecl->isCopyAssignmentOperator() || methodDecl->isMoveAssignmentOperator())) return true; if (methodDecl && methodDecl->getIdentifier() && (methodDecl->getName().startswith("Clone") || methodDecl->getName().startswith("clone"))) return true; auto cxxConstructorDecl = dyn_cast(parentFunction); if (cxxConstructorDecl && cxxConstructorDecl->isCopyOrMoveConstructor()) return true; } // walk up the tree until we find something interesting const Stmt* child = memberExpr; const Stmt* parent = getParentStmt(memberExpr); bool bPotentiallyAssignedTo = false; bool bDump = false; std::string assignValue = "?"; // check for field being returned by non-const ref eg. Foo& getFoo() { return f; } if (parentFunction && parent && isa(parent)) { const Stmt* parent2 = getParentStmt(parent); if (parent2 && isa(parent2)) { QualType qt = parentFunction->getReturnType().getDesugaredType(compiler.getASTContext()); if (!qt.isConstQualified() && qt->isReferenceType()) { bPotentiallyAssignedTo = true; } } } while (!bPotentiallyAssignedTo) { // check for field being accessed by a reference variable e.g. Foo& f = m.foo; auto parentsList = compiler.getASTContext().getParents(*child); auto it = parentsList.begin(); if (it != parentsList.end()) { const VarDecl *varDecl = it->get(); if (varDecl) { QualType qt = varDecl->getType().getDesugaredType(compiler.getASTContext()); if (!qt.isConstQualified() && qt->isReferenceType()) { bPotentiallyAssignedTo = true; break; } } } if (!parent) { return true; } if (isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent)) { child = parent; parent = getParentStmt(parent); } else if (isa(parent)) { const UnaryOperator* unaryOperator = dyn_cast(parent); int x = unaryOperator->getOpcode(); if (x == UO_AddrOf || x == UO_PostInc || x == UO_PostDec || x == UO_PreInc || x == UO_PreDec) { assignValue = "?"; bPotentiallyAssignedTo = true; break; } // cannot be assigned to anymore break; } else if (auto callExpr = dyn_cast(parent)) { checkCallExpr(child, callExpr, assignValue, bPotentiallyAssignedTo); break; } else if (isa(parent)) { const CXXConstructExpr* consExpr = dyn_cast(parent); const CXXConstructorDecl* consDecl = consExpr->getConstructor(); for (unsigned i = 0; i < consExpr->getNumArgs(); ++i) { if (i >= consDecl->getNumParams()) // can happen in template code break; if (consExpr->getArg(i) == child) { const ParmVarDecl* parmVarDecl = consDecl->getParamDecl(i); QualType qt = parmVarDecl->getType().getDesugaredType(compiler.getASTContext()); if (!qt.isConstQualified() && qt->isReferenceType()) { bPotentiallyAssignedTo = true; } break; } } break; } else if (isa(parent)) { const BinaryOperator* binaryOp = dyn_cast(parent); auto op = binaryOp->getOpcode(); if ( binaryOp->getLHS() != child ) { // if the expr is on the RHS, do nothing } else if ( op == BO_Assign ) { assignValue = getExprValue(binaryOp->getRHS()); bPotentiallyAssignedTo = true; } else if ( op == BO_MulAssign || op == BO_DivAssign || op == BO_RemAssign || op == BO_AddAssign || op == BO_SubAssign || op == BO_ShlAssign || op == BO_ShrAssign || op == BO_AndAssign || op == BO_XorAssign || op == BO_OrAssign ) { bPotentiallyAssignedTo = true; } break; } else if ( isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) || isa(parent) //??? || isa(parent) || isa(parent) ) { break; } #if CLANG_VERSION >= 40000 else if ( isa(parent) ) { bPotentiallyAssignedTo = true; break; } #endif else { bPotentiallyAssignedTo = true; bDump = true; break; } } if (bDump) { report( DiagnosticsEngine::Warning, "oh dear, what can the matter be?", compat::getBeginLoc(memberExpr)) << memberExpr->getSourceRange(); parent->dump(); } if (bPotentiallyAssignedTo) { MyFieldAssignmentInfo aInfo; niceName(fieldDecl, aInfo); aInfo.value = assignValue; assignedSet.insert(aInfo); } return true; } void SingleValFields::checkCallExpr(const Stmt* child, const CallExpr* callExpr, std::string& assignValue, bool& bPotentiallyAssignedTo) { if (callExpr->getCallee() == child) { return; } const FunctionDecl* functionDecl; if (auto memberCallExpr = dyn_cast(callExpr)) { functionDecl = memberCallExpr->getMethodDecl(); } else { functionDecl = callExpr->getDirectCallee(); } if (functionDecl) { if (auto operatorCallExpr = dyn_cast(callExpr)) { if (operatorCallExpr->getArg(0) == child) { const CXXMethodDecl* calleeMethodDecl = dyn_cast_or_null(operatorCallExpr->getDirectCallee()); if (calleeMethodDecl) { if (operatorCallExpr->getOperator() == OO_Equal) { assignValue = getExprValue(operatorCallExpr->getArg(1)); bPotentiallyAssignedTo = true; return; } } } } for (unsigned i = 0; i < callExpr->getNumArgs(); ++i) { if (i >= functionDecl->getNumParams()) // can happen in template code break; if (callExpr->getArg(i) == child) { const ParmVarDecl* parmVarDecl = functionDecl->getParamDecl(i); QualType qt = parmVarDecl->getType().getDesugaredType(compiler.getASTContext()); if (!qt.isConstQualified() && qt->isReferenceType()) { assignValue = "?"; bPotentiallyAssignedTo = true; } break; } } return; } // check for function pointers const FieldDecl* calleeFieldDecl = dyn_cast_or_null(callExpr->getCalleeDecl()); if (!calleeFieldDecl) { return; } QualType qt = calleeFieldDecl->getType().getDesugaredType(compiler.getASTContext()); if (!qt->isPointerType()) { return; } qt = qt->getPointeeType().getDesugaredType(compiler.getASTContext()); const FunctionProtoType* proto = qt->getAs(); if (!proto) { return; } for (unsigned i = 0; i < callExpr->getNumArgs(); ++i) { if (i >= proto->getNumParams()) // can happen in template code break; if (callExpr->getArg(i) == child) { QualType qt = proto->getParamType(i).getDesugaredType(compiler.getASTContext()); if (!qt.isConstQualified() && qt->isReferenceType()) { assignValue = "?"; bPotentiallyAssignedTo = true; } break; } } } std::string SingleValFields::getExprValue(const Expr* arg) { if (!arg) return "?"; arg = arg->IgnoreParenCasts(); arg = arg->IgnoreImplicit(); // ignore this, it seems to trigger an infinite recursion if (isa(arg)) return "?"; if (arg->isValueDependent()) return "?"; // ParenListExpr containing a CXXNullPtrLiteralExpr and has a NULL type pointer if (auto parenListExpr = dyn_cast(arg)) { if (parenListExpr->getNumExprs() == 1) return getExprValue(parenListExpr->getExpr(0)); return "?"; } if (auto constructExpr = dyn_cast(arg)) { if (constructExpr->getNumArgs() >= 1 && isa(constructExpr->getArg(0))) { return dyn_cast(constructExpr->getArg(0))->getString(); } } #if CLANG_VERSION >= 50000 if (arg->getType()->isFloatingType()) { APFloat x1(0.0f); if (arg->EvaluateAsFloat(x1, compiler.getASTContext())) { std::string s; llvm::raw_string_ostream os(s); x1.print(os); return os.str(); } } #endif APSInt x1; if (arg->EvaluateAsInt(x1, compiler.getASTContext())) return x1.toString(10); if (isa(arg)) return "0"; return "?"; } loplugin::Plugin::Registration< SingleValFields > X("singlevalfields", false); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */