/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include using namespace com::sun::star; namespace drawinglayer { namespace primitive2d { Primitive2DSequence GridPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& rViewInformation) const { Primitive2DSequence aRetval; if(!rViewInformation.getViewport().isEmpty() && getWidth() > 0.0 && getHeight() > 0.0) { // decompose grid matrix to get logic size basegfx::B2DVector aScale, aTranslate; double fRotate, fShearX; getTransform().decompose(aScale, aTranslate, fRotate, fShearX); // create grid matrix which transforms from scaled logic to view basegfx::B2DHomMatrix aRST(basegfx::tools::createShearXRotateTranslateB2DHomMatrix( fShearX, fRotate, aTranslate.getX(), aTranslate.getY())); aRST *= rViewInformation.getObjectToViewTransformation(); // get step widths double fStepX(getWidth()); double fStepY(getHeight()); const double fMinimalStep(10.0); // guarantee a step width of 10.0 if(basegfx::fTools::less(fStepX, fMinimalStep)) { fStepX = fMinimalStep; } if(basegfx::fTools::less(fStepY, fMinimalStep)) { fStepY = fMinimalStep; } // get relative distances in view coordinates double fViewStepX((rViewInformation.getObjectToViewTransformation() * basegfx::B2DVector(fStepX, 0.0)).getLength()); double fViewStepY((rViewInformation.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fStepY)).getLength()); double fSmallStepX(1.0), fViewSmallStepX(1.0), fSmallStepY(1.0), fViewSmallStepY(1.0); sal_uInt32 nSmallStepsX(0L), nSmallStepsY(0L); // setup subdivisions if(getSubdivisionsX()) { fSmallStepX = fStepX / getSubdivisionsX(); fViewSmallStepX = fViewStepX / getSubdivisionsX(); } if(getSubdivisionsY()) { fSmallStepY = fStepY / getSubdivisionsY(); fViewSmallStepY = fViewStepY / getSubdivisionsY(); } // correct step width while(fViewStepX < getSmallestViewDistance()) { fViewStepX *= 2.0; fStepX *= 2.0; } while(fViewStepY < getSmallestViewDistance()) { fViewStepY *= 2.0; fStepY *= 2.0; } // correct small step width if(getSubdivisionsX()) { while(fViewSmallStepX < getSmallestSubdivisionViewDistance()) { fViewSmallStepX *= 2.0; fSmallStepX *= 2.0; } nSmallStepsX = (sal_uInt32)(fStepX / fSmallStepX); } if(getSubdivisionsY()) { while(fViewSmallStepY < getSmallestSubdivisionViewDistance()) { fViewSmallStepY *= 2.0; fSmallStepY *= 2.0; } nSmallStepsY = (sal_uInt32)(fStepY / fSmallStepY); } // calculate extended viewport in which grid points may lie at all basegfx::B2DRange aExtendedViewport; if(rViewInformation.getDiscreteViewport().isEmpty()) { // not set, use logic size to travel over all potential grid points aExtendedViewport = basegfx::B2DRange(0.0, 0.0, aScale.getX(), aScale.getY()); } else { // transform unit range to discrete view aExtendedViewport = basegfx::B2DRange(0.0, 0.0, 1.0, 1.0); basegfx::B2DHomMatrix aTrans(rViewInformation.getObjectToViewTransformation() * getTransform()); aExtendedViewport.transform(aTrans); // intersect with visible part aExtendedViewport.intersect(rViewInformation.getDiscreteViewport()); if(!aExtendedViewport.isEmpty()) { // convert back and apply scale aTrans.invert(); aTrans.scale(aScale.getX(), aScale.getY()); aExtendedViewport.transform(aTrans); // crop start/end in X/Y to multiples of logical step width const double fHalfCrossSize((rViewInformation.getInverseObjectToViewTransformation() * basegfx::B2DVector(3.0, 0.0)).getLength()); const double fMinX(floor((aExtendedViewport.getMinX() - fHalfCrossSize) / fStepX) * fStepX); const double fMaxX(ceil((aExtendedViewport.getMaxX() + fHalfCrossSize) / fStepX) * fStepX); const double fMinY(floor((aExtendedViewport.getMinY() - fHalfCrossSize) / fStepY) * fStepY); const double fMaxY(ceil((aExtendedViewport.getMaxY() + fHalfCrossSize) / fStepY) * fStepY); // put to aExtendedViewport and crop on object logic size aExtendedViewport = basegfx::B2DRange( std::max(fMinX, 0.0), std::max(fMinY, 0.0), std::min(fMaxX, aScale.getX()), std::min(fMaxY, aScale.getY())); } } if(!aExtendedViewport.isEmpty()) { // prepare point vectors for point and cross markers std::vector< basegfx::B2DPoint > aPositionsPoint; std::vector< basegfx::B2DPoint > aPositionsCross; for(double fX(aExtendedViewport.getMinX()); fX < aExtendedViewport.getMaxX(); fX += fStepX) { const bool bXZero(basegfx::fTools::equalZero(fX)); for(double fY(aExtendedViewport.getMinY()); fY < aExtendedViewport.getMaxY(); fY += fStepY) { const bool bYZero(basegfx::fTools::equalZero(fY)); if(!bXZero && !bYZero) { // get discrete position and test against 3x3 area surrounding it // since it's a cross const double fHalfCrossSize(3.0 * 0.5); const basegfx::B2DPoint aViewPos(aRST * basegfx::B2DPoint(fX, fY)); const basegfx::B2DRange aDiscreteRangeCross( aViewPos.getX() - fHalfCrossSize, aViewPos.getY() - fHalfCrossSize, aViewPos.getX() + fHalfCrossSize, aViewPos.getY() + fHalfCrossSize); if(rViewInformation.getDiscreteViewport().overlaps(aDiscreteRangeCross)) { const basegfx::B2DPoint aLogicPos(rViewInformation.getInverseObjectToViewTransformation() * aViewPos); aPositionsCross.push_back(aLogicPos); } } if(getSubdivisionsX() && !bYZero) { double fF(fX + fSmallStepX); for(sal_uInt32 a(1); a < nSmallStepsX && fF < aExtendedViewport.getMaxX(); a++, fF += fSmallStepX) { const basegfx::B2DPoint aViewPos(aRST * basegfx::B2DPoint(fF, fY)); if(rViewInformation.getDiscreteViewport().isInside(aViewPos)) { const basegfx::B2DPoint aLogicPos(rViewInformation.getInverseObjectToViewTransformation() * aViewPos); aPositionsPoint.push_back(aLogicPos); } } } if(getSubdivisionsY() && !bXZero) { double fF(fY + fSmallStepY); for(sal_uInt32 a(1); a < nSmallStepsY && fF < aExtendedViewport.getMaxY(); a++, fF += fSmallStepY) { const basegfx::B2DPoint aViewPos(aRST * basegfx::B2DPoint(fX, fF)); if(rViewInformation.getDiscreteViewport().isInside(aViewPos)) { const basegfx::B2DPoint aLogicPos(rViewInformation.getInverseObjectToViewTransformation() * aViewPos); aPositionsPoint.push_back(aLogicPos); } } } } } // prepare return value const sal_uInt32 nCountPoint(aPositionsPoint.size()); const sal_uInt32 nCountCross(aPositionsCross.size()); const sal_uInt32 nRetvalCount((nCountPoint ? 1 : 0) + (nCountCross ? 1 : 0)); sal_uInt32 nInsertCounter(0); aRetval.realloc(nRetvalCount); // add PointArrayPrimitive2D if point markers were added if(nCountPoint) { aRetval[nInsertCounter++] = Primitive2DReference(new PointArrayPrimitive2D(aPositionsPoint, getBColor())); } // add MarkerArrayPrimitive2D if cross markers were added if(nCountCross) { if(!getSubdivisionsX() && !getSubdivisionsY()) { // no subdivisions, so fall back to points at grid positions, no need to // visualize a difference between divisions and sub-divisions aRetval[nInsertCounter++] = Primitive2DReference(new PointArrayPrimitive2D(aPositionsCross, getBColor())); } else { aRetval[nInsertCounter++] = Primitive2DReference(new MarkerArrayPrimitive2D(aPositionsCross, getCrossMarker())); } } } } return aRetval; } GridPrimitive2D::GridPrimitive2D( const basegfx::B2DHomMatrix& rTransform, double fWidth, double fHeight, double fSmallestViewDistance, double fSmallestSubdivisionViewDistance, sal_uInt32 nSubdivisionsX, sal_uInt32 nSubdivisionsY, const basegfx::BColor& rBColor, const BitmapEx& rCrossMarker) : BufferedDecompositionPrimitive2D(), maTransform(rTransform), mfWidth(fWidth), mfHeight(fHeight), mfSmallestViewDistance(fSmallestViewDistance), mfSmallestSubdivisionViewDistance(fSmallestSubdivisionViewDistance), mnSubdivisionsX(nSubdivisionsX), mnSubdivisionsY(nSubdivisionsY), maBColor(rBColor), maCrossMarker(rCrossMarker), maLastObjectToViewTransformation(), maLastViewport() { } bool GridPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const { if(BufferedDecompositionPrimitive2D::operator==(rPrimitive)) { const GridPrimitive2D& rCompare = (GridPrimitive2D&)rPrimitive; return (getTransform() == rCompare.getTransform() && getWidth() == rCompare.getWidth() && getHeight() == rCompare.getHeight() && getSmallestViewDistance() == rCompare.getSmallestViewDistance() && getSmallestSubdivisionViewDistance() == rCompare.getSmallestSubdivisionViewDistance() && getSubdivisionsX() == rCompare.getSubdivisionsX() && getSubdivisionsY() == rCompare.getSubdivisionsY() && getBColor() == rCompare.getBColor() && getCrossMarker() == rCompare.getCrossMarker()); } return false; } basegfx::B2DRange GridPrimitive2D::getB2DRange(const geometry::ViewInformation2D& rViewInformation) const { // get object's range basegfx::B2DRange aUnitRange(0.0, 0.0, 1.0, 1.0); aUnitRange.transform(getTransform()); // intersect with visible part aUnitRange.intersect(rViewInformation.getViewport()); return aUnitRange; } Primitive2DSequence GridPrimitive2D::get2DDecomposition(const geometry::ViewInformation2D& rViewInformation) const { ::osl::MutexGuard aGuard( m_aMutex ); if(getBuffered2DDecomposition().hasElements()) { if(maLastViewport != rViewInformation.getViewport() || maLastObjectToViewTransformation != rViewInformation.getObjectToViewTransformation()) { // conditions of last local decomposition have changed, delete const_cast< GridPrimitive2D* >(this)->setBuffered2DDecomposition(Primitive2DSequence()); } } if(!getBuffered2DDecomposition().hasElements()) { // remember ViewRange and ViewTransformation const_cast< GridPrimitive2D* >(this)->maLastObjectToViewTransformation = rViewInformation.getObjectToViewTransformation(); const_cast< GridPrimitive2D* >(this)->maLastViewport = rViewInformation.getViewport(); } // use parent implementation return BufferedDecompositionPrimitive2D::get2DDecomposition(rViewInformation); } // provide unique ID ImplPrimitive2DIDBlock(GridPrimitive2D, PRIMITIVE2D_ID_GRIDPRIMITIVE2D) } // end of namespace primitive2d } // end of namespace drawinglayer /* vim:set shiftwidth=4 softtabstop=4 expandtab: */