/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "vclprocessor2d.hxx" #include "getdigitlanguage.hxx" #include "vclhelperbufferdevice.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for support of Title/Description in all apps when embedding pictures #include // control support #include #include #include using namespace com::sun::star; namespace { sal_uInt32 calculateStepsForSvgGradient(const basegfx::BColor& rColorA, const basegfx::BColor& rColorB, double fDelta, double fDiscreteUnit) { // use color distance, assume to do every color step sal_uInt32 nSteps(basegfx::fround(rColorA.getDistance(rColorB) * 255.0)); if (nSteps) { // calc discrete length to change color each discrete unit (pixel) const sal_uInt32 nDistSteps(basegfx::fround(fDelta / fDiscreteUnit)); nSteps = std::min(nSteps, nDistSteps); } // reduce quality to 3 discrete units or every 3rd color step for rendering nSteps /= 2; // roughly cut when too big or too small (not full quality, reduce complexity) nSteps = std::min(nSteps, sal_uInt32(255)); nSteps = std::max(nSteps, sal_uInt32(1)); return nSteps; } } namespace drawinglayer::processor2d { // rendering support // directdraw of text simple portion or decorated portion primitive. When decorated, all the extra // information is translated to VCL parameters and set at the font. // Acceptance is restricted to no shearing and positive scaling in X and Y (no font mirroring // for VCL) void VclProcessor2D::RenderTextSimpleOrDecoratedPortionPrimitive2D( const primitive2d::TextSimplePortionPrimitive2D& rTextCandidate) { // decompose matrix to have position and size of text basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rTextCandidate.getTextTransform()); basegfx::B2DVector aFontScaling, aTranslate; double fRotate, fShearX; aLocalTransform.decompose(aFontScaling, aTranslate, fRotate, fShearX); bool bPrimitiveAccepted(false); // tdf#95581: Assume tiny shears are rounding artefacts or whatever and can be ignored, // especially if the effect is less than a pixel. if (std::abs(aFontScaling.getY() * fShearX) < 1) { if (basegfx::fTools::less(aFontScaling.getX(), 0.0) && basegfx::fTools::less(aFontScaling.getY(), 0.0)) { // handle special case: If scale is negative in (x,y) (3rd quadrant), it can // be expressed as rotation by PI. Use this since the Font rendering will not // apply the negative scales in any form aFontScaling = basegfx::absolute(aFontScaling); fRotate += F_PI; } if (basegfx::fTools::more(aFontScaling.getX(), 0.0) && basegfx::fTools::more(aFontScaling.getY(), 0.0)) { // Get the VCL font (use FontHeight as FontWidth) vcl::Font aFont(primitive2d::getVclFontFromFontAttribute( rTextCandidate.getFontAttribute(), aFontScaling.getX(), aFontScaling.getY(), fRotate, rTextCandidate.getLocale())); // set FillColor Attribute const Color aFillColor(rTextCandidate.getTextFillColor()); if (aFillColor != COL_TRANSPARENT) { aFont.SetFillColor(aFillColor); aFont.SetTransparent(false); } // Don't draw fonts without height if (aFont.GetFontHeight() <= 0) return; // handle additional font attributes const primitive2d::TextDecoratedPortionPrimitive2D* pTCPP = dynamic_cast( &rTextCandidate); if (pTCPP != nullptr) { // set the color of text decorations const basegfx::BColor aTextlineColor = maBColorModifierStack.getModifiedColor(pTCPP->getTextlineColor()); mpOutputDevice->SetTextLineColor(Color(aTextlineColor)); // set Overline attribute const FontLineStyle eFontOverline( primitive2d::mapTextLineToFontLineStyle(pTCPP->getFontOverline())); if (eFontOverline != LINESTYLE_NONE) { aFont.SetOverline(eFontOverline); const basegfx::BColor aOverlineColor = maBColorModifierStack.getModifiedColor(pTCPP->getOverlineColor()); mpOutputDevice->SetOverlineColor(Color(aOverlineColor)); if (pTCPP->getWordLineMode()) aFont.SetWordLineMode(true); } // set Underline attribute const FontLineStyle eFontLineStyle( primitive2d::mapTextLineToFontLineStyle(pTCPP->getFontUnderline())); if (eFontLineStyle != LINESTYLE_NONE) { aFont.SetUnderline(eFontLineStyle); if (pTCPP->getWordLineMode()) aFont.SetWordLineMode(true); } // set Strikeout attribute const FontStrikeout eFontStrikeout( primitive2d::mapTextStrikeoutToFontStrikeout(pTCPP->getTextStrikeout())); if (eFontStrikeout != STRIKEOUT_NONE) aFont.SetStrikeout(eFontStrikeout); // set EmphasisMark attribute FontEmphasisMark eFontEmphasisMark = FontEmphasisMark::NONE; switch (pTCPP->getTextEmphasisMark()) { default: SAL_WARN("drawinglayer", "Unknown EmphasisMark style " << pTCPP->getTextEmphasisMark()); [[fallthrough]]; case primitive2d::TEXT_FONT_EMPHASIS_MARK_NONE: eFontEmphasisMark = FontEmphasisMark::NONE; break; case primitive2d::TEXT_FONT_EMPHASIS_MARK_DOT: eFontEmphasisMark = FontEmphasisMark::Dot; break; case primitive2d::TEXT_FONT_EMPHASIS_MARK_CIRCLE: eFontEmphasisMark = FontEmphasisMark::Circle; break; case primitive2d::TEXT_FONT_EMPHASIS_MARK_DISC: eFontEmphasisMark = FontEmphasisMark::Disc; break; case primitive2d::TEXT_FONT_EMPHASIS_MARK_ACCENT: eFontEmphasisMark = FontEmphasisMark::Accent; break; } if (eFontEmphasisMark != FontEmphasisMark::NONE) { DBG_ASSERT((pTCPP->getEmphasisMarkAbove() != pTCPP->getEmphasisMarkBelow()), "DrawingLayer: Bad EmphasisMark position!"); if (pTCPP->getEmphasisMarkAbove()) eFontEmphasisMark |= FontEmphasisMark::PosAbove; else eFontEmphasisMark |= FontEmphasisMark::PosBelow; aFont.SetEmphasisMark(eFontEmphasisMark); } // set Relief attribute FontRelief eFontRelief = FontRelief::NONE; switch (pTCPP->getTextRelief()) { default: SAL_WARN("drawinglayer", "Unknown Relief style " << pTCPP->getTextRelief()); [[fallthrough]]; case primitive2d::TEXT_RELIEF_NONE: eFontRelief = FontRelief::NONE; break; case primitive2d::TEXT_RELIEF_EMBOSSED: eFontRelief = FontRelief::Embossed; break; case primitive2d::TEXT_RELIEF_ENGRAVED: eFontRelief = FontRelief::Engraved; break; } if (eFontRelief != FontRelief::NONE) aFont.SetRelief(eFontRelief); // set Shadow attribute if (pTCPP->getShadow()) aFont.SetShadow(true); } // create transformed integer DXArray in view coordinate system std::vector aTransformedDXArray; if (!rTextCandidate.getDXArray().empty()) { aTransformedDXArray.reserve(rTextCandidate.getDXArray().size()); const basegfx::B2DVector aPixelVector(maCurrentTransformation * basegfx::B2DVector(1.0, 0.0)); const double fPixelVectorFactor(aPixelVector.getLength()); for (auto const& elem : rTextCandidate.getDXArray()) { aTransformedDXArray.push_back(basegfx::fround(elem * fPixelVectorFactor)); } } // set parameters and paint text snippet const basegfx::BColor aRGBFontColor( maBColorModifierStack.getModifiedColor(rTextCandidate.getFontColor())); const basegfx::B2DPoint aPoint(aLocalTransform * basegfx::B2DPoint(0.0, 0.0)); const Point aStartPoint(basegfx::fround(aPoint.getX()), basegfx::fround(aPoint.getY())); const ComplexTextLayoutFlags nOldLayoutMode(mpOutputDevice->GetLayoutMode()); if (rTextCandidate.getFontAttribute().getRTL()) { ComplexTextLayoutFlags nRTLLayoutMode(nOldLayoutMode & ~ComplexTextLayoutFlags::BiDiStrong); nRTLLayoutMode |= ComplexTextLayoutFlags::BiDiRtl | ComplexTextLayoutFlags::TextOriginLeft; mpOutputDevice->SetLayoutMode(nRTLLayoutMode); } mpOutputDevice->SetFont(aFont); mpOutputDevice->SetTextColor(Color(aRGBFontColor)); OUString aText(rTextCandidate.getText()); sal_Int32 nPos = rTextCandidate.getTextPosition(); sal_Int32 nLen = rTextCandidate.getTextLength(); long* pDXArray = !aTransformedDXArray.empty() ? aTransformedDXArray.data() : nullptr; if (rTextCandidate.isFilled()) { basegfx::B2DVector aOldFontScaling, aOldTranslate; double fOldRotate, fOldShearX; rTextCandidate.getTextTransform().decompose(aOldFontScaling, aOldTranslate, fOldRotate, fOldShearX); long nWidthToFill = static_cast( rTextCandidate.getWidthToFill() * aFontScaling.getX() / aOldFontScaling.getX()); long nWidth = mpOutputDevice->GetTextArray(rTextCandidate.getText(), pDXArray, 0, 1); long nChars = 2; if (nWidth) nChars = nWidthToFill / nWidth; OUStringBuffer aFilled; comphelper::string::padToLength(aFilled, nChars, aText[0]); aText = aFilled.makeStringAndClear(); nPos = 0; nLen = nChars; } if (!aTransformedDXArray.empty()) { mpOutputDevice->DrawTextArray(aStartPoint, aText, pDXArray, nPos, nLen); } else { mpOutputDevice->DrawText(aStartPoint, aText, nPos, nLen); } if (rTextCandidate.getFontAttribute().getRTL()) { mpOutputDevice->SetLayoutMode(nOldLayoutMode); } bPrimitiveAccepted = true; } } if (!bPrimitiveAccepted) { // let break down process(rTextCandidate); } } // direct draw of hairline void VclProcessor2D::RenderPolygonHairlinePrimitive2D( const primitive2d::PolygonHairlinePrimitive2D& rPolygonCandidate, bool bPixelBased) { const basegfx::BColor aHairlineColor( maBColorModifierStack.getModifiedColor(rPolygonCandidate.getBColor())); mpOutputDevice->SetLineColor(Color(aHairlineColor)); mpOutputDevice->SetFillColor(); basegfx::B2DPolygon aLocalPolygon(rPolygonCandidate.getB2DPolygon()); aLocalPolygon.transform(maCurrentTransformation); if (bPixelBased && getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete()) { // #i98289# // when a Hairline is painted and AntiAliasing is on the option SnapHorVerLinesToDiscrete // allows to suppress AntiAliasing for pure horizontal or vertical lines. This is done since // not-AntiAliased such lines look more pleasing to the eye (e.g. 2D chart content). This // NEEDS to be done in discrete coordinates, so only useful for pixel based rendering. aLocalPolygon = basegfx::utils::snapPointsOfHorizontalOrVerticalEdges(aLocalPolygon); } mpOutputDevice->DrawPolyLine(aLocalPolygon, 0.0); } // direct draw of transformed BitmapEx primitive void VclProcessor2D::RenderBitmapPrimitive2D(const primitive2d::BitmapPrimitive2D& rBitmapCandidate) { BitmapEx aBitmapEx(VCLUnoHelper::GetBitmap(rBitmapCandidate.getXBitmap())); const basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rBitmapCandidate.getTransform()); if (maBColorModifierStack.count()) { aBitmapEx = aBitmapEx.ModifyBitmapEx(maBColorModifierStack); if (aBitmapEx.IsEmpty()) { // color gets completely replaced, get it const basegfx::BColor aModifiedColor( maBColorModifierStack.getModifiedColor(basegfx::BColor())); basegfx::B2DPolygon aPolygon(basegfx::utils::createUnitPolygon()); aPolygon.transform(aLocalTransform); mpOutputDevice->SetFillColor(Color(aModifiedColor)); mpOutputDevice->SetLineColor(); mpOutputDevice->DrawPolygon(aPolygon); return; } } // #122923# do no longer add Alpha channel here; the right place to do this is when really // the own transformer is used (see OutputDevice::DrawTransformedBitmapEx). // draw using OutputDevice'sDrawTransformedBitmapEx mpOutputDevice->DrawTransformedBitmapEx(aLocalTransform, aBitmapEx); } void VclProcessor2D::RenderFillGraphicPrimitive2D( const primitive2d::FillGraphicPrimitive2D& rFillBitmapCandidate) { const attribute::FillGraphicAttribute& rFillGraphicAttribute( rFillBitmapCandidate.getFillGraphic()); bool bPrimitiveAccepted(false); // #121194# when tiling is used and content is bitmap-based, do direct tiling in the // renderer on pixel base to ensure tight fitting. Do not do this when // the fill is rotated or sheared. if (rFillGraphicAttribute.getTiling()) { // content is bitmap(ex) // // for Vector Graphic Data (SVG, EMF+) support, force decomposition when present. This will lead to use // the primitive representation of the vector data directly. // // when graphic is animated, force decomposition to use the correct graphic, else // fill style will not be animated if (GraphicType::Bitmap == rFillGraphicAttribute.getGraphic().GetType() && !rFillGraphicAttribute.getGraphic().getVectorGraphicData() && !rFillGraphicAttribute.getGraphic().IsAnimated()) { // decompose matrix to check for shear, rotate and mirroring basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rFillBitmapCandidate.getTransformation()); basegfx::B2DVector aScale, aTranslate; double fRotate, fShearX; aLocalTransform.decompose(aScale, aTranslate, fRotate, fShearX); // when nopt rotated/sheared if (basegfx::fTools::equalZero(fRotate) && basegfx::fTools::equalZero(fShearX)) { // no shear or rotate, draw direct in pixel coordinates bPrimitiveAccepted = true; // transform object range to device coordinates (pixels). Use // the device transformation for better accuracy basegfx::B2DRange aObjectRange(aTranslate, aTranslate + aScale); aObjectRange.transform(mpOutputDevice->GetViewTransformation()); // extract discrete size of object const sal_Int32 nOWidth(basegfx::fround(aObjectRange.getWidth())); const sal_Int32 nOHeight(basegfx::fround(aObjectRange.getHeight())); // only do something when object has a size in discrete units if (nOWidth > 0 && nOHeight > 0) { // transform graphic range to device coordinates (pixels). Use // the device transformation for better accuracy basegfx::B2DRange aGraphicRange(rFillGraphicAttribute.getGraphicRange()); aGraphicRange.transform(mpOutputDevice->GetViewTransformation() * aLocalTransform); // extract discrete size of graphic // caution: when getting to zero, nothing would be painted; thus, do not allow this const sal_Int32 nBWidth( std::max(sal_Int32(1), basegfx::fround(aGraphicRange.getWidth()))); const sal_Int32 nBHeight( std::max(sal_Int32(1), basegfx::fround(aGraphicRange.getHeight()))); // only do something when bitmap fill has a size in discrete units if (nBWidth > 0 && nBHeight > 0) { // nBWidth, nBHeight is the pixel size of the needed bitmap. To not need to scale it // in vcl many times, create a size-optimized version const Size aNeededBitmapSizePixel(nBWidth, nBHeight); BitmapEx aBitmapEx(rFillGraphicAttribute.getGraphic().GetBitmapEx()); const bool bPreScaled(nBWidth * nBHeight < (250 * 250)); // ... but only up to a maximum size, else it gets too expensive if (bPreScaled) { // if color depth is below 24bit, expand before scaling for better quality. // This is even needed for low colors, else the scale will produce // a bitmap in gray or Black/White (!) if (aBitmapEx.GetBitCount() < 24) { aBitmapEx.Convert(BmpConversion::N24Bit); } aBitmapEx.Scale(aNeededBitmapSizePixel, BmpScaleFlag::Interpolate); } bool bPainted(false); if (maBColorModifierStack.count()) { // when color modifier, apply to bitmap aBitmapEx = aBitmapEx.ModifyBitmapEx(maBColorModifierStack); // impModifyBitmapEx uses empty bitmap as sign to return that // the content will be completely replaced to mono color, use shortcut if (aBitmapEx.IsEmpty()) { // color gets completely replaced, get it const basegfx::BColor aModifiedColor( maBColorModifierStack.getModifiedColor(basegfx::BColor())); basegfx::B2DPolygon aPolygon(basegfx::utils::createUnitPolygon()); aPolygon.transform(aLocalTransform); mpOutputDevice->SetFillColor(Color(aModifiedColor)); mpOutputDevice->SetLineColor(); mpOutputDevice->DrawPolygon(aPolygon); bPainted = true; } } if (!bPainted) { sal_Int32 nBLeft(basegfx::fround(aGraphicRange.getMinX())); sal_Int32 nBTop(basegfx::fround(aGraphicRange.getMinY())); const sal_Int32 nOLeft(basegfx::fround(aObjectRange.getMinX())); const sal_Int32 nOTop(basegfx::fround(aObjectRange.getMinY())); sal_Int32 nPosX(0); sal_Int32 nPosY(0); if (nBLeft > nOLeft) { const sal_Int32 nDiff((nBLeft / nBWidth) + 1); nPosX -= nDiff; nBLeft -= nDiff * nBWidth; } if (nBLeft + nBWidth <= nOLeft) { const sal_Int32 nDiff(-nBLeft / nBWidth); nPosX += nDiff; nBLeft += nDiff * nBWidth; } if (nBTop > nOTop) { const sal_Int32 nDiff((nBTop / nBHeight) + 1); nPosY -= nDiff; nBTop -= nDiff * nBHeight; } if (nBTop + nBHeight <= nOTop) { const sal_Int32 nDiff(-nBTop / nBHeight); nPosY += nDiff; nBTop += nDiff * nBHeight; } // prepare OutDev const Point aEmptyPoint(0, 0); const ::tools::Rectangle aVisiblePixel( aEmptyPoint, mpOutputDevice->GetOutputSizePixel()); const bool bWasEnabled(mpOutputDevice->IsMapModeEnabled()); mpOutputDevice->EnableMapMode(false); // check if offset is used const sal_Int32 nOffsetX( basegfx::fround(rFillGraphicAttribute.getOffsetX() * nBWidth)); if (nOffsetX) { // offset in X, so iterate over Y first and draw lines for (sal_Int32 nYPos(nBTop); nYPos < nOTop + nOHeight; nYPos += nBHeight, nPosY++) { for (sal_Int32 nXPos((nPosY % 2) ? nBLeft - nBWidth + nOffsetX : nBLeft); nXPos < nOLeft + nOWidth; nXPos += nBWidth) { const ::tools::Rectangle aOutRectPixel( Point(nXPos, nYPos), aNeededBitmapSizePixel); if (aOutRectPixel.IsOver(aVisiblePixel)) { if (bPreScaled) { mpOutputDevice->DrawBitmapEx( aOutRectPixel.TopLeft(), aBitmapEx); } else { mpOutputDevice->DrawBitmapEx( aOutRectPixel.TopLeft(), aNeededBitmapSizePixel, aBitmapEx); } } } } } else { // check if offset is used const sal_Int32 nOffsetY( basegfx::fround(rFillGraphicAttribute.getOffsetY() * nBHeight)); // possible offset in Y, so iterate over X first and draw columns for (sal_Int32 nXPos(nBLeft); nXPos < nOLeft + nOWidth; nXPos += nBWidth, nPosX++) { for (sal_Int32 nYPos((nPosX % 2) ? nBTop - nBHeight + nOffsetY : nBTop); nYPos < nOTop + nOHeight; nYPos += nBHeight) { const ::tools::Rectangle aOutRectPixel( Point(nXPos, nYPos), aNeededBitmapSizePixel); if (aOutRectPixel.IsOver(aVisiblePixel)) { if (bPreScaled) { mpOutputDevice->DrawBitmapEx( aOutRectPixel.TopLeft(), aBitmapEx); } else { mpOutputDevice->DrawBitmapEx( aOutRectPixel.TopLeft(), aNeededBitmapSizePixel, aBitmapEx); } } } } } // restore OutDev mpOutputDevice->EnableMapMode(bWasEnabled); } } } } } } if (!bPrimitiveAccepted) { // do not accept, use decomposition process(rFillBitmapCandidate); } } // direct draw of Graphic void VclProcessor2D::RenderPolyPolygonGraphicPrimitive2D( const primitive2d::PolyPolygonGraphicPrimitive2D& rPolygonCandidate) { bool bDone(false); const basegfx::B2DPolyPolygon& rPolyPolygon = rPolygonCandidate.getB2DPolyPolygon(); // #121194# Todo: check if this works if (!rPolyPolygon.count()) { // empty polyPolygon, done bDone = true; } else { const attribute::FillGraphicAttribute& rFillGraphicAttribute = rPolygonCandidate.getFillGraphic(); // try to catch cases where the graphic will be color-modified to a single // color (e.g. shadow) switch (rFillGraphicAttribute.getGraphic().GetType()) { case GraphicType::GdiMetafile: { // metafiles are potentially transparent, cannot optimize, not done break; } case GraphicType::Bitmap: { if (!rFillGraphicAttribute.getGraphic().IsTransparent() && !rFillGraphicAttribute.getGraphic().IsAlpha()) { // bitmap is not transparent and has no alpha const sal_uInt32 nBColorModifierStackCount(maBColorModifierStack.count()); if (nBColorModifierStackCount) { const basegfx::BColorModifierSharedPtr& rTopmostModifier = maBColorModifierStack.getBColorModifier(nBColorModifierStackCount - 1); const basegfx::BColorModifier_replace* pReplacer = dynamic_cast( rTopmostModifier.get()); if (pReplacer) { // the bitmap fill is in unified color, so we can replace it with // a single polygon fill. The form of the fill depends on tiling if (rFillGraphicAttribute.getTiling()) { // with tiling, fill the whole tools::PolyPolygon with the modifier color basegfx::B2DPolyPolygon aLocalPolyPolygon(rPolyPolygon); aLocalPolyPolygon.transform(maCurrentTransformation); mpOutputDevice->SetLineColor(); mpOutputDevice->SetFillColor(Color(pReplacer->getBColor())); mpOutputDevice->DrawPolyPolygon(aLocalPolyPolygon); } else { // without tiling, only the area common to the bitmap tile and the // tools::PolyPolygon is filled. Create the bitmap tile area in object // coordinates. For this, the object transformation needs to be created // from the already scaled PolyPolygon. The tile area in object // coordinates will always be non-rotated, so it's not necessary to // work with a polygon here basegfx::B2DRange aTileRange( rFillGraphicAttribute.getGraphicRange()); const basegfx::B2DRange aPolyPolygonRange( rPolyPolygon.getB2DRange()); const basegfx::B2DHomMatrix aNewObjectTransform( basegfx::utils::createScaleTranslateB2DHomMatrix( aPolyPolygonRange.getRange(), aPolyPolygonRange.getMinimum())); aTileRange.transform(aNewObjectTransform); // now clip the object polyPolygon against the tile range // to get the common area basegfx::B2DPolyPolygon aTarget = basegfx::utils::clipPolyPolygonOnRange( rPolyPolygon, aTileRange, true, false); if (aTarget.count()) { aTarget.transform(maCurrentTransformation); mpOutputDevice->SetLineColor(); mpOutputDevice->SetFillColor(Color(pReplacer->getBColor())); mpOutputDevice->DrawPolyPolygon(aTarget); } } // simplified output executed, we are done bDone = true; } } } break; } default: //GraphicType::NONE, GraphicType::Default { // empty graphic, we are done bDone = true; break; } } } if (!bDone) { // use default decomposition process(rPolygonCandidate); } } // mask group. Force output to VDev and create mask from given mask void VclProcessor2D::RenderMaskPrimitive2DPixel(const primitive2d::MaskPrimitive2D& rMaskCandidate) { if (rMaskCandidate.getChildren().empty()) return; basegfx::B2DPolyPolygon aMask(rMaskCandidate.getMask()); if (!aMask.count()) return; aMask.transform(maCurrentTransformation); const basegfx::B2DRange aRange(basegfx::utils::getRange(aMask)); impBufferDevice aBufferDevice(*mpOutputDevice, aRange); if (!aBufferDevice.isVisible()) return; // remember last OutDev and set to content OutputDevice* pLastOutputDevice = mpOutputDevice; mpOutputDevice = &aBufferDevice.getContent(); // paint to it process(rMaskCandidate.getChildren()); // back to old OutDev mpOutputDevice = pLastOutputDevice; // if the mask fills the whole area we can skip // creating a transparent vd and filling it. if (!basegfx::utils::isRectangle(aMask)) { // draw mask if (getOptionsDrawinglayer().IsAntiAliasing()) { // with AA, use 8bit AlphaMask to get nice borders VirtualDevice& rTransparence = aBufferDevice.getTransparence(); rTransparence.SetLineColor(); rTransparence.SetFillColor(COL_BLACK); rTransparence.DrawPolyPolygon(aMask); } else { // No AA, use 1bit mask VirtualDevice& rMask = aBufferDevice.getMask(); rMask.SetLineColor(); rMask.SetFillColor(COL_BLACK); rMask.DrawPolyPolygon(aMask); } } // dump buffer to outdev aBufferDevice.paint(); } // modified color group. Force output to unified color. void VclProcessor2D::RenderModifiedColorPrimitive2D( const primitive2d::ModifiedColorPrimitive2D& rModifiedCandidate) { if (!rModifiedCandidate.getChildren().empty()) { maBColorModifierStack.push(rModifiedCandidate.getColorModifier()); process(rModifiedCandidate.getChildren()); maBColorModifierStack.pop(); } } // unified sub-transparence. Draw to VDev first. void VclProcessor2D::RenderUnifiedTransparencePrimitive2D( const primitive2d::UnifiedTransparencePrimitive2D& rTransCandidate) { if (rTransCandidate.getChildren().empty()) return; if (0.0 == rTransCandidate.getTransparence()) { // no transparence used, so just use the content process(rTransCandidate.getChildren()); } else if (rTransCandidate.getTransparence() > 0.0 && rTransCandidate.getTransparence() < 1.0) { // transparence is in visible range basegfx::B2DRange aRange(rTransCandidate.getChildren().getB2DRange(getViewInformation2D())); aRange.transform(maCurrentTransformation); impBufferDevice aBufferDevice(*mpOutputDevice, aRange); if (aBufferDevice.isVisible()) { // remember last OutDev and set to content OutputDevice* pLastOutputDevice = mpOutputDevice; mpOutputDevice = &aBufferDevice.getContent(); // paint content to it process(rTransCandidate.getChildren()); // back to old OutDev mpOutputDevice = pLastOutputDevice; // dump buffer to outdev using given transparence aBufferDevice.paint(rTransCandidate.getTransparence()); } } } // sub-transparence group. Draw to VDev first. void VclProcessor2D::RenderTransparencePrimitive2D( const primitive2d::TransparencePrimitive2D& rTransCandidate) { if (rTransCandidate.getChildren().empty()) return; basegfx::B2DRange aRange(rTransCandidate.getChildren().getB2DRange(getViewInformation2D())); aRange.transform(maCurrentTransformation); impBufferDevice aBufferDevice(*mpOutputDevice, aRange); if (!aBufferDevice.isVisible()) return; // remember last OutDev and set to content OutputDevice* pLastOutputDevice = mpOutputDevice; mpOutputDevice = &aBufferDevice.getContent(); // paint content to it process(rTransCandidate.getChildren()); // set to mask mpOutputDevice = &aBufferDevice.getTransparence(); // when painting transparence masks, reset the color stack basegfx::BColorModifierStack aLastBColorModifierStack(maBColorModifierStack); maBColorModifierStack = basegfx::BColorModifierStack(); // paint mask to it (always with transparence intensities, evtl. with AA) process(rTransCandidate.getTransparence()); // back to old color stack maBColorModifierStack = aLastBColorModifierStack; // back to old OutDev mpOutputDevice = pLastOutputDevice; // dump buffer to outdev aBufferDevice.paint(); } // transform group. void VclProcessor2D::RenderTransformPrimitive2D( const primitive2d::TransformPrimitive2D& rTransformCandidate) { // remember current transformation and ViewInformation const basegfx::B2DHomMatrix aLastCurrentTransformation(maCurrentTransformation); const geometry::ViewInformation2D aLastViewInformation2D(getViewInformation2D()); // create new transformations for CurrentTransformation // and for local ViewInformation2D maCurrentTransformation = maCurrentTransformation * rTransformCandidate.getTransformation(); const geometry::ViewInformation2D aViewInformation2D( getViewInformation2D().getObjectTransformation() * rTransformCandidate.getTransformation(), getViewInformation2D().getViewTransformation(), getViewInformation2D().getViewport(), getViewInformation2D().getVisualizedPage(), getViewInformation2D().getViewTime(), getViewInformation2D().getExtendedInformationSequence()); updateViewInformation(aViewInformation2D); // process content process(rTransformCandidate.getChildren()); // restore transformations maCurrentTransformation = aLastCurrentTransformation; updateViewInformation(aLastViewInformation2D); } // new XDrawPage for ViewInformation2D void VclProcessor2D::RenderPagePreviewPrimitive2D( const primitive2d::PagePreviewPrimitive2D& rPagePreviewCandidate) { // remember current transformation and ViewInformation const geometry::ViewInformation2D aLastViewInformation2D(getViewInformation2D()); // create new local ViewInformation2D const geometry::ViewInformation2D aViewInformation2D( getViewInformation2D().getObjectTransformation(), getViewInformation2D().getViewTransformation(), getViewInformation2D().getViewport(), rPagePreviewCandidate.getXDrawPage(), getViewInformation2D().getViewTime(), getViewInformation2D().getExtendedInformationSequence()); updateViewInformation(aViewInformation2D); // process decomposed content process(rPagePreviewCandidate); // restore transformations updateViewInformation(aLastViewInformation2D); } // marker void VclProcessor2D::RenderMarkerArrayPrimitive2D( const primitive2d::MarkerArrayPrimitive2D& rMarkArrayCandidate) { // get data const std::vector& rPositions = rMarkArrayCandidate.getPositions(); const sal_uInt32 nCount(rPositions.size()); if (!(nCount && !rMarkArrayCandidate.getMarker().IsEmpty())) return; // get pixel size const BitmapEx& rMarker(rMarkArrayCandidate.getMarker()); const Size aBitmapSize(rMarker.GetSizePixel()); if (!(aBitmapSize.Width() && aBitmapSize.Height())) return; // get discrete half size const basegfx::B2DVector aDiscreteHalfSize((aBitmapSize.getWidth() - 1.0) * 0.5, (aBitmapSize.getHeight() - 1.0) * 0.5); const bool bWasEnabled(mpOutputDevice->IsMapModeEnabled()); // do not forget evtl. moved origin in target device MapMode when // switching it off; it would be missing and lead to wrong positions. // All his could be done using logic sizes and coordinates, too, but // we want a 1:1 bitmap rendering here, so it's more safe and faster // to work with switching off MapMode usage completely. const Point aOrigin(mpOutputDevice->GetMapMode().GetOrigin()); mpOutputDevice->EnableMapMode(false); for (auto const& pos : rPositions) { const basegfx::B2DPoint aDiscreteTopLeft((maCurrentTransformation * pos) - aDiscreteHalfSize); const Point aDiscretePoint(basegfx::fround(aDiscreteTopLeft.getX()), basegfx::fround(aDiscreteTopLeft.getY())); mpOutputDevice->DrawBitmapEx(aDiscretePoint + aOrigin, rMarker); } mpOutputDevice->EnableMapMode(bWasEnabled); } // point void VclProcessor2D::RenderPointArrayPrimitive2D( const primitive2d::PointArrayPrimitive2D& rPointArrayCandidate) { const std::vector& rPositions = rPointArrayCandidate.getPositions(); const basegfx::BColor aRGBColor( maBColorModifierStack.getModifiedColor(rPointArrayCandidate.getRGBColor())); const Color aVCLColor(aRGBColor); for (auto const& pos : rPositions) { const basegfx::B2DPoint aViewPosition(maCurrentTransformation * pos); const Point aPos(basegfx::fround(aViewPosition.getX()), basegfx::fround(aViewPosition.getY())); mpOutputDevice->DrawPixel(aPos, aVCLColor); } } void VclProcessor2D::RenderPolygonStrokePrimitive2D( const primitive2d::PolygonStrokePrimitive2D& rPolygonStrokeCandidate) { // #i101491# method restructured to clearly use the DrawPolyLine // calls starting from a defined line width const attribute::LineAttribute& rLineAttribute = rPolygonStrokeCandidate.getLineAttribute(); const double fLineWidth(rLineAttribute.getWidth()); bool bDone(false); if (basegfx::fTools::more(fLineWidth, 0.0)) { const basegfx::B2DVector aDiscreteUnit(maCurrentTransformation * basegfx::B2DVector(fLineWidth, 0.0)); const double fDiscreteLineWidth(aDiscreteUnit.getLength()); const attribute::StrokeAttribute& rStrokeAttribute = rPolygonStrokeCandidate.getStrokeAttribute(); const basegfx::BColor aHairlineColor( maBColorModifierStack.getModifiedColor(rLineAttribute.getColor())); basegfx::B2DPolyPolygon aHairlinePolyPolygon; mpOutputDevice->SetLineColor(Color(aHairlineColor)); mpOutputDevice->SetFillColor(); if (0.0 == rStrokeAttribute.getFullDotDashLen()) { // no line dashing, just copy aHairlinePolyPolygon.append(rPolygonStrokeCandidate.getB2DPolygon()); } else { // else apply LineStyle basegfx::utils::applyLineDashing( rPolygonStrokeCandidate.getB2DPolygon(), rStrokeAttribute.getDotDashArray(), &aHairlinePolyPolygon, nullptr, rStrokeAttribute.getFullDotDashLen()); } const sal_uInt32 nCount(aHairlinePolyPolygon.count()); if (nCount) { const bool bAntiAliased(getOptionsDrawinglayer().IsAntiAliasing()); aHairlinePolyPolygon.transform(maCurrentTransformation); if (bAntiAliased) { if (basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 1.0)) { // line in range ]0.0 .. 1.0[ // paint as simple hairline for (sal_uInt32 a(0); a < nCount; a++) { mpOutputDevice->DrawPolyLine(aHairlinePolyPolygon.getB2DPolygon(a), 0.0); } bDone = true; } else if (basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 2.0)) { // line in range [1.0 .. 2.0[ // paint as 2x2 with dynamic line distance basegfx::B2DHomMatrix aMat; const double fDistance(fDiscreteLineWidth - 1.0); const double fHalfDistance(fDistance * 0.5); for (sal_uInt32 a(0); a < nCount; a++) { basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a)); aMat.set(0, 2, -fHalfDistance); aMat.set(1, 2, -fHalfDistance); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, fDistance); aMat.set(1, 2, 0.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, 0.0); aMat.set(1, 2, fDistance); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, -fDistance); aMat.set(1, 2, 0.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); } bDone = true; } else if (basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 3.0)) { // line in range [2.0 .. 3.0] // paint as cross in a 3x3 with dynamic line distance basegfx::B2DHomMatrix aMat; const double fDistance((fDiscreteLineWidth - 1.0) * 0.5); for (sal_uInt32 a(0); a < nCount; a++) { basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a)); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, -fDistance); aMat.set(1, 2, 0.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, fDistance); aMat.set(1, 2, -fDistance); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, fDistance); aMat.set(1, 2, fDistance); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, -fDistance); aMat.set(1, 2, fDistance); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); } bDone = true; } else { // #i101491# line width above 3.0 } } else { if (basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 1.5)) { // line width below 1.5, draw the basic hairline polygon for (sal_uInt32 a(0); a < nCount; a++) { mpOutputDevice->DrawPolyLine(aHairlinePolyPolygon.getB2DPolygon(a), 0.0); } bDone = true; } else if (basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 2.5)) { // line width is in range ]1.5 .. 2.5], use four hairlines // drawn in a square for (sal_uInt32 a(0); a < nCount; a++) { basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a)); basegfx::B2DHomMatrix aMat; mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, 1.0); aMat.set(1, 2, 0.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, 0.0); aMat.set(1, 2, 1.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); aMat.set(0, 2, -1.0); aMat.set(1, 2, 0.0); aCandidate.transform(aMat); mpOutputDevice->DrawPolyLine(aCandidate, 0.0); } bDone = true; } else { // #i101491# line width is above 2.5 } } if (!bDone && rPolygonStrokeCandidate.getB2DPolygon().count() > 1000) { // #i101491# If the polygon complexity uses more than a given amount, do // use OutputDevice::DrawPolyLine directly; this will avoid buffering all // decompositions in primitives (memory) and fallback to old line painting // for very complex polygons, too for (sal_uInt32 a(0); a < nCount; a++) { mpOutputDevice->DrawPolyLine(aHairlinePolyPolygon.getB2DPolygon(a), fDiscreteLineWidth, rLineAttribute.getLineJoin(), rLineAttribute.getLineCap(), rLineAttribute.getMiterMinimumAngle()); } bDone = true; } } } if (!bDone) { // remember that we enter a PolygonStrokePrimitive2D decomposition, // used for AA thick line drawing mnPolygonStrokePrimitive2D++; // line width is big enough for standard filled polygon visualisation or zero process(rPolygonStrokeCandidate); // leave PolygonStrokePrimitive2D mnPolygonStrokePrimitive2D--; } } void VclProcessor2D::RenderEpsPrimitive2D(const primitive2d::EpsPrimitive2D& rEpsPrimitive2D) { // The new decomposition of Metafiles made it necessary to add an Eps // primitive to handle embedded Eps data. On some devices, this can be // painted directly (mac, printer). // To be able to handle the replacement correctly, i need to handle it myself // since DrawEPS will not be able e.g. to rotate the replacement. To be able // to do that, i added a boolean return to OutputDevice::DrawEPS(..) // to know when EPS was handled directly already. basegfx::B2DRange aRange(0.0, 0.0, 1.0, 1.0); aRange.transform(maCurrentTransformation * rEpsPrimitive2D.getEpsTransform()); if (aRange.isEmpty()) return; const ::tools::Rectangle aRectangle(static_cast(floor(aRange.getMinX())), static_cast(floor(aRange.getMinY())), static_cast(ceil(aRange.getMaxX())), static_cast(ceil(aRange.getMaxY()))); if (aRectangle.IsEmpty()) return; bool bWillReallyRender = mpOutputDevice->IsDeviceOutputNecessary(); // try to paint EPS directly without fallback visualisation const bool bEPSPaintedDirectly = bWillReallyRender && mpOutputDevice->DrawEPS(aRectangle.TopLeft(), aRectangle.GetSize(), rEpsPrimitive2D.getGfxLink()); if (!bEPSPaintedDirectly) { // use the decomposition which will correctly handle the // fallback visualisation using full transformation (e.g. rotation) process(rEpsPrimitive2D); } } void VclProcessor2D::RenderObjectInfoPrimitive2D( const primitive2d::ObjectInfoPrimitive2D& rObjectInfoPrimitive2D) { // remember current ObjectInfoPrimitive2D and set new current one (build a stack - push) const primitive2d::ObjectInfoPrimitive2D* pLast(getObjectInfoPrimitive2D()); mpObjectInfoPrimitive2D = &rObjectInfoPrimitive2D; // process content process(rObjectInfoPrimitive2D.getChildren()); // restore current ObjectInfoPrimitive2D (pop) mpObjectInfoPrimitive2D = pLast; } void VclProcessor2D::RenderSvgLinearAtomPrimitive2D( const primitive2d::SvgLinearAtomPrimitive2D& rCandidate) { const double fDelta(rCandidate.getOffsetB() - rCandidate.getOffsetA()); if (!basegfx::fTools::more(fDelta, 0.0)) return; const basegfx::BColor aColorA(maBColorModifierStack.getModifiedColor(rCandidate.getColorA())); const basegfx::BColor aColorB(maBColorModifierStack.getModifiedColor(rCandidate.getColorB())); // calculate discrete unit in WorldCoordinates; use diagonal (1.0, 1.0) and divide by sqrt(2) const basegfx::B2DVector aDiscreteVector( getViewInformation2D().getInverseObjectToViewTransformation() * basegfx::B2DVector(1.0, 1.0)); const double fDiscreteUnit(aDiscreteVector.getLength() * (1.0 / 1.414213562373)); // use color distance and discrete lengths to calculate step count const sal_uInt32 nSteps(calculateStepsForSvgGradient(aColorA, aColorB, fDelta, fDiscreteUnit)); // switch off line painting mpOutputDevice->SetLineColor(); // prepare polygon in needed width at start position (with discrete overlap) const basegfx::B2DPolygon aPolygon(basegfx::utils::createPolygonFromRect( basegfx::B2DRange(rCandidate.getOffsetA() - fDiscreteUnit, 0.0, rCandidate.getOffsetA() + (fDelta / nSteps) + fDiscreteUnit, 1.0))); // prepare loop ([0.0 .. 1.0[) double fUnitScale(0.0); const double fUnitStep(1.0 / nSteps); // loop and paint for (sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep) { basegfx::B2DPolygon aNew(aPolygon); aNew.transform(maCurrentTransformation * basegfx::utils::createTranslateB2DHomMatrix(fDelta * fUnitScale, 0.0)); mpOutputDevice->SetFillColor(Color(basegfx::interpolate(aColorA, aColorB, fUnitScale))); mpOutputDevice->DrawPolyPolygon(basegfx::B2DPolyPolygon(aNew)); } } void VclProcessor2D::RenderSvgRadialAtomPrimitive2D( const primitive2d::SvgRadialAtomPrimitive2D& rCandidate) { const double fDeltaScale(rCandidate.getScaleB() - rCandidate.getScaleA()); if (!basegfx::fTools::more(fDeltaScale, 0.0)) return; const basegfx::BColor aColorA(maBColorModifierStack.getModifiedColor(rCandidate.getColorA())); const basegfx::BColor aColorB(maBColorModifierStack.getModifiedColor(rCandidate.getColorB())); // calculate discrete unit in WorldCoordinates; use diagonal (1.0, 1.0) and divide by sqrt(2) const basegfx::B2DVector aDiscreteVector( getViewInformation2D().getInverseObjectToViewTransformation() * basegfx::B2DVector(1.0, 1.0)); const double fDiscreteUnit(aDiscreteVector.getLength() * (1.0 / 1.414213562373)); // use color distance and discrete lengths to calculate step count const sal_uInt32 nSteps( calculateStepsForSvgGradient(aColorA, aColorB, fDeltaScale, fDiscreteUnit)); // switch off line painting mpOutputDevice->SetLineColor(); // prepare loop ([0.0 .. 1.0[, full polygons, no polypolygons with holes) double fUnitScale(0.0); const double fUnitStep(1.0 / nSteps); for (sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep) { basegfx::B2DHomMatrix aTransform; const double fEndScale(rCandidate.getScaleB() - (fDeltaScale * fUnitScale)); if (rCandidate.isTranslateSet()) { const basegfx::B2DVector aTranslate(basegfx::interpolate( rCandidate.getTranslateB(), rCandidate.getTranslateA(), fUnitScale)); aTransform = basegfx::utils::createScaleTranslateB2DHomMatrix( fEndScale, fEndScale, aTranslate.getX(), aTranslate.getY()); } else { aTransform = basegfx::utils::createScaleB2DHomMatrix(fEndScale, fEndScale); } basegfx::B2DPolygon aNew(basegfx::utils::createPolygonFromUnitCircle()); aNew.transform(maCurrentTransformation * aTransform); mpOutputDevice->SetFillColor(Color(basegfx::interpolate(aColorB, aColorA, fUnitScale))); mpOutputDevice->DrawPolyPolygon(basegfx::B2DPolyPolygon(aNew)); } } void VclProcessor2D::adaptLineToFillDrawMode() const { const DrawModeFlags nOriginalDrawMode(mpOutputDevice->GetDrawMode()); if (!(nOriginalDrawMode & (DrawModeFlags::BlackLine | DrawModeFlags::GrayLine | DrawModeFlags::WhiteLine | DrawModeFlags::SettingsLine))) return; DrawModeFlags nAdaptedDrawMode(nOriginalDrawMode); if (nOriginalDrawMode & DrawModeFlags::BlackLine) { nAdaptedDrawMode |= DrawModeFlags::BlackFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::BlackFill; } if (nOriginalDrawMode & DrawModeFlags::GrayLine) { nAdaptedDrawMode |= DrawModeFlags::GrayFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::GrayFill; } if (nOriginalDrawMode & DrawModeFlags::WhiteLine) { nAdaptedDrawMode |= DrawModeFlags::WhiteFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::WhiteFill; } if (nOriginalDrawMode & DrawModeFlags::SettingsLine) { nAdaptedDrawMode |= DrawModeFlags::SettingsFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::SettingsFill; } mpOutputDevice->SetDrawMode(nAdaptedDrawMode); } void VclProcessor2D::adaptTextToFillDrawMode() const { const DrawModeFlags nOriginalDrawMode(mpOutputDevice->GetDrawMode()); if (!(nOriginalDrawMode & (DrawModeFlags::BlackText | DrawModeFlags::GrayText | DrawModeFlags::WhiteText | DrawModeFlags::SettingsText))) return; DrawModeFlags nAdaptedDrawMode(nOriginalDrawMode); if (nOriginalDrawMode & DrawModeFlags::BlackText) { nAdaptedDrawMode |= DrawModeFlags::BlackFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::BlackFill; } if (nOriginalDrawMode & DrawModeFlags::GrayText) { nAdaptedDrawMode |= DrawModeFlags::GrayFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::GrayFill; } if (nOriginalDrawMode & DrawModeFlags::WhiteText) { nAdaptedDrawMode |= DrawModeFlags::WhiteFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::WhiteFill; } if (nOriginalDrawMode & DrawModeFlags::SettingsText) { nAdaptedDrawMode |= DrawModeFlags::SettingsFill; } else { nAdaptedDrawMode &= ~DrawModeFlags::SettingsFill; } mpOutputDevice->SetDrawMode(nAdaptedDrawMode); } // process support VclProcessor2D::VclProcessor2D(const geometry::ViewInformation2D& rViewInformation, OutputDevice& rOutDev, const basegfx::BColorModifierStack& rInitStack) : BaseProcessor2D(rViewInformation) , mpOutputDevice(&rOutDev) , maBColorModifierStack(rInitStack) , maCurrentTransformation() , maDrawinglayerOpt() , mnPolygonStrokePrimitive2D(0) , mpObjectInfoPrimitive2D(nullptr) { // set digit language, derived from SvtCTLOptions to have the correct // number display for arabic/hindi numerals rOutDev.SetDigitLanguage(drawinglayer::detail::getDigitLanguage()); } VclProcessor2D::~VclProcessor2D() {} } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */