/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include using namespace ::com::sun::star::i18n; namespace i18npool { // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec constexpr double SynPeriod = 29.53058868; // Julian day on Jan 1, 1900 constexpr double jd1900 = 2415020.75933; // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900 constexpr sal_Int32 SynRef = 1252; constexpr sal_Int32 GregRef = 1422; Calendar_hijri::Calendar_hijri() { cCalendar = u"com.sun.star.i18n.Calendar_hijri"_ustr; } #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH)) // map field value from hijri calendar to gregorian calendar void Calendar_hijri::mapToGregorian() { if (!(fieldSet & FIELDS)) return; sal_Int32 day = static_cast(fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH]); sal_Int32 month = static_cast(fieldSetValue[CalendarFieldIndex::MONTH]) + 1; sal_Int32 year = static_cast(fieldSetValue[CalendarFieldIndex::YEAR]); if (fieldSetValue[CalendarFieldIndex::ERA] == 0) year *= -1; ToGregorian(&day, &month, &year); fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1; fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast(month - 1); fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast(day); fieldSetValue[CalendarFieldIndex::YEAR] = static_cast(abs(year)); fieldSet |= FIELDS; } // map field value from gregorian calendar to hijri calendar void Calendar_hijri::mapFromGregorian() { sal_Int32 month, day, year; day = static_cast(fieldValue[CalendarFieldIndex::DAY_OF_MONTH]); month = static_cast(fieldValue[CalendarFieldIndex::MONTH]) + 1; year = static_cast(fieldValue[CalendarFieldIndex::YEAR]); if (fieldValue[CalendarFieldIndex::ERA] == 0) year *= -1; // Get Hijri date getHijri(&day, &month, &year); fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast(day); fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast(month - 1); fieldValue[CalendarFieldIndex::YEAR] = static_cast(abs(year)); fieldValue[CalendarFieldIndex::ERA] = static_cast(year) < 1 ? 0 : 1; } // This function returns the Julian date/time of the Nth new moon since // January 1900. The synodic month is passed as parameter. // Adapted from "Astronomical Formulae for Calculators" by // Jean Meeus, Third Edition, Willmann-Bell, 1985. double Calendar_hijri::NewMoon(sal_Int32 n) { double jd, t, t2, t3, k, ma, sa, tf, xtra; k = n; t = k/1236.85; // Time in Julian centuries from 1900 January 0.5 t2 = t * t; t3 = t2 * t; // Mean time of phase jd = jd1900 + SynPeriod * k - 0.0001178 * t2 - 0.000000155 * t3 + 0.00033 * sin(basegfx::deg2rad(166.56 + 132.87 * t - 0.009173 * t2)); // Sun's mean anomaly in radian sa = basegfx::deg2rad(359.2242 + 29.10535608 * k - 0.0000333 * t2 - 0.00000347 * t3); // Moon's mean anomaly ma = basegfx::deg2rad(306.0253 + 385.81691806 * k + 0.0107306 * t2 + 0.00001236 * t3); // Moon's argument of latitude tf = 2.0 * basegfx::deg2rad(21.2964 + 390.67050646 * k - 0.0016528 * t2 - 0.00000239 * t3); // should reduce to interval between 0 to 1.0 before calculating further // Corrections for New Moon xtra = (0.1734 - 0.000393 * t) * sin(sa) + 0.0021 * sin(sa * 2) - 0.4068 * sin(ma) + 0.0161 * sin(2 * ma) - 0.0004 * sin(3 * ma) + 0.0104 * sin(tf) - 0.0051 * sin(sa + ma) - 0.0074 * sin(sa - ma) + 0.0004 * sin(tf + sa) - 0.0004 * sin(tf - sa) - 0.0006 * sin(tf + ma) + 0.0010 * sin(tf - ma) + 0.0005 * sin(sa + 2 * ma); // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT) jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440; return jd; } // Get Hijri Date void Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year) { double prevday; sal_Int32 syndiff; sal_Int32 newsyn; double newjd; sal_Int32 synmonth; // Get Julian Day from Gregorian sal_Int32 const julday = getJulianDay(*day, *month, *year); // obtain approx. of how many Synodic months since the beginning of the year 1900 synmonth = static_cast(0.5 + (julday - jd1900)/SynPeriod); newsyn = synmonth; prevday = julday - 0.5; do { newjd = NewMoon(newsyn); // Decrement syntonic months newsyn--; } while (newjd > prevday); newsyn++; // difference from reference point syndiff = newsyn - SynRef; // Round up the day *day = static_cast(julday - newjd + 0.5); *month = (syndiff % 12) + 1; // currently not supported //dayOfYear = (sal_Int32)(month * SynPeriod + day); *year = GregRef + static_cast(syndiff / 12); // If month negative, consider it previous year if (syndiff != 0 && *month <= 0) { *month += 12; (*year)--; } // If Before Hijri subtract 1 if (*year <= 0) (*year)--; } void Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year) { sal_Int32 nmonth; double jday; if ( *year < 0 ) (*year)++; // Number of month from reference point nmonth = *month + *year * 12 - (GregRef * 12 + 1); // Add Synodic Reference point nmonth += SynRef; // Get Julian days add time too jday = NewMoon(nmonth) + *day; // Round-up jday = std::trunc(jday + 0.5); // Use algorithm from "Numerical Recipes in C" getGregorianDay(static_cast(jday), day, month, year); // Julian -> Gregorian only works for non-negative year if ( *year <= 0 ) { *day = -1; *month = -1; *year = -1; } } /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */ /* this algorithm only valid for non-negative gregorian year */ void Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear) { /* working variables */ tools::Long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE; constexpr sal_Int32 GREGORIAN_CROSSOVER = 2299161; /* test whether to adjust for the Gregorian calendar crossover */ if (lJulianDay >= GREGORIAN_CROSSOVER) { /* calculate a small adjustment */ tools::Long lAdjust = static_cast((static_cast(lJulianDay - 1867216) - 0.25) / 36524.25); lFactorA = lJulianDay + 1 + lAdjust - static_cast(0.25 * lAdjust); } else { /* no adjustment needed */ lFactorA = lJulianDay; } lFactorB = lFactorA + 1524; lFactorC = static_cast(6680.0 + (static_cast(lFactorB - 2439870) - 122.1) / 365.25); lFactorD = static_cast(365 * lFactorC + (0.25 * lFactorC)); lFactorE = static_cast((lFactorB - lFactorD) / i18nutil::monthDaysWithoutJanFeb); /* now, pull out the day number */ *pnDay = lFactorB - lFactorD - static_cast(i18nutil::monthDaysWithoutJanFeb * lFactorE); /* ...and the month, adjusting it if necessary */ *pnMonth = lFactorE - 1; if (*pnMonth > 12) (*pnMonth) -= 12; /* ...and similarly for the year */ *pnYear = lFactorC - 4715; if (*pnMonth > 2) (*pnYear)--; // Negative year adjustments if (*pnYear <= 0) (*pnYear)--; } sal_Int32 Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year) { double jy, jm; if( year == 0 ) { return -1; } if( year == 1582 && month == 10 && day > 4 && day < 15 ) { return -1; } if( month > 2 ) { jy = year; jm = month + 1; } else { jy = year - 1; jm = month + 13; } sal_Int32 intgr = static_cast(static_cast(365.25 * jy) + static_cast(i18nutil::monthDaysWithoutJanFeb * jm) + day + 1720995 ); //check for switch to Gregorian calendar double const gregcal = 15 + 31 * ( 10 + 12 * 1582 ); if( day + 31 * (month + 12 * year) >= gregcal ) { double ja; ja = std::trunc(0.01 * jy); intgr += static_cast(2 - ja + std::trunc(0.25 * ja)); } return intgr; } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */