/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #pragma once #include #include #include #include #include #include #include namespace o3tl { // Length units enum class Length { mm100 = 0, // 1/100th mm mm10, // 1/10 mm, corresponds to MapUnit::Map10thMM mm, // millimeter cm, // centimeter m, // meter km, // kilometer emu, // English Metric Unit: 1/360000 cm, 1/914400 in twip, // "Twentieth of a point" aka "dxa": 1/20 pt pt, // Point: 1/72 in pc, // Pica: 1/6 in, corresponds to FieldUnit::PICA and MeasureUnit::PICA in1000, // 1/1000 in, corresponds to MapUnit::Map1000thInch in100, // 1/100 in, corresponds to MapUnit::Map100thInch in10, // 1/10 in, corresponds to MapUnit::Map10thInch in, // inch ft, // foot mi, // mile master, // PPT Master Unit: 1/576 in px, // "pixel" unit: 15 twip (96 ppi), corresponds to MeasureUnit::PIXEL ch, // "char" unit: 210 twip (14 px), corresponds to FieldUnit::CHAR line, // "line" unit: 312 twip, corresponds to FieldUnit::LINE count, // <== add new units above this last entry invalid = -1 }; // If other categories of units would be needed (like time), a separate scoped enum // should be created, respective conversion array prepared in detail namespace, and // respective md(NewUnit, NewUnit) overload introduced, which would allow using // o3tl::convert(), o3tl::convertSaturate() and o3tl::getConversionMulDiv() with the // new category in a type-safe way, without mixing unrelated units. namespace detail { // Common utilities // A special function to avoid compiler warning comparing signed and unsigned values template constexpr bool isBetween(I n, sal_Int64 min, sal_Int64 max) { assert(max > 0 && min < 0); if constexpr (std::is_signed_v) return n >= min && n <= max; else return n <= sal_uInt64(max); } // Ensure correct rounding for both positive and negative integers template , int> = 0> constexpr sal_Int64 MulDiv(I n, sal_Int64 m, sal_Int64 d) { assert(m > 0 && d > 0); assert(isBetween(n, (SAL_MIN_INT64 + d / 2) / m, (SAL_MAX_INT64 - d / 2) / m)); return (n >= 0 ? (n * m + d / 2) : (n * m - d / 2)) / d; } template , int> = 0> constexpr double MulDiv(F f, sal_Int64 m, sal_Int64 d) { assert(m > 0 && d > 0); return f * (double(m) / d); } template , int> = 0> constexpr sal_Int64 MulDiv(I n, sal_Int64 m, sal_Int64 d, bool& bOverflow, sal_Int64 nDefault) { if (!isBetween(n, (SAL_MIN_INT64 + d / 2) / m, (SAL_MAX_INT64 - d / 2) / m)) { bOverflow = true; return nDefault; } bOverflow = false; return MulDiv(n, m, d); } template , int> = 0> constexpr sal_Int64 MulDivSaturate(I n, sal_Int64 m, sal_Int64 d) { if (sal_Int64 d_2 = d / 2; !isBetween(n, (SAL_MIN_INT64 + d_2) / m, (SAL_MAX_INT64 - d_2) / m)) { if (n >= 0) { if (m > d && std::make_unsigned_t(n) > sal_uInt64(SAL_MAX_INT64 / m * d - d_2)) return SAL_MAX_INT64; // saturate // coverity[ tainted_data_return : FALSE ] version 2023.12.2 return saturating_add(n, d_2) / d * m; // divide before multiplication } else if constexpr (std::is_signed_v) // n < 0; don't compile for unsigned n { if (m > d && n < SAL_MIN_INT64 / m * d + d_2) return SAL_MIN_INT64; // saturate return saturating_sub(n, d_2) / d * m; // divide before multiplication } } return MulDiv(n, m, d); } template constexpr std::common_type_t asserting_gcd(M m, N n) { auto ret = std::gcd(m, n); assert(ret != 0); return ret; } // Packs integral multiplier and divisor for conversion from one unit to another struct m_and_d { sal_Int64 m; // multiplier sal_Int64 d; // divisor constexpr m_and_d(sal_Int64 _m, sal_Int64 _d) : m(_m / asserting_gcd(_m, _d)) // make sure to use smallest quotients here because , d(_d / asserting_gcd(_m, _d)) // they will be multiplied when building final table { assert(_m > 0 && _d > 0); } }; // Resulting static array N x N of all quotients to convert between all units. The // quotients are minimal to allow largest range of converted numbers without overflow. // Maybe o3tl::enumarray could be used here, but it's not constexpr yet. template constexpr auto prepareMDArray(const m_and_d (&mdBase)[N]) { std::array, N> a{}; for (int i = 0; i < N; ++i) { a[i][i] = 1; for (int j = 0; j < i; ++j) { assert(mdBase[i].m < SAL_MAX_INT64 / mdBase[j].d); assert(mdBase[i].d < SAL_MAX_INT64 / mdBase[j].m); const sal_Int64 m = mdBase[i].m * mdBase[j].d, d = mdBase[i].d * mdBase[j].m; const sal_Int64 g = asserting_gcd(m, d); a[i][j] = m / g; a[j][i] = d / g; } } return a; } // A generic template used for fundamental arithmetic types template constexpr sal_Int64 md(U i, U /*j*/) { return i; } // Length units implementation // Array of conversion quotients for mm, used to build final conversion table. Entries // are { multiplier, divider } to convert respective unit *to* mm. Order of elements // corresponds to order in o3tl::Length enum (Length::count and Length::invalid omitted). constexpr m_and_d mdBaseLen[] = { { 1, 100 }, // mm100 => mm { 1, 10 }, // mm10 => mm { 1, 1 }, // mm => mm { 10, 1 }, // cm => mm { 1000, 1 }, // m => mm { 1000000, 1 }, // km => mm { 1, 36000 }, // emu => mm { 254, 10 * 1440 }, // twip => mm { 254, 10 * 72 }, // pt => mm { 254, 10 * 6 }, // pc => mm { 254, 10000 }, // in1000 => mm { 254, 1000 }, // in100 => mm { 254, 100 }, // in10 => mm { 254, 10 }, // in => mm { 254 * 12, 10 }, // ft => mm { 254 * 12 * 5280, 10 }, // mi => mm { 254, 10 * 576 }, // master => mm { 254 * 15, 10 * 1440 }, // px => mm { 254 * 210, 10 * 1440 }, // ch => mm { 254 * 312, 10 * 1440 }, // line => mm }; static_assert(std::size(mdBaseLen) == static_cast(Length::count), "mdBaseL must have an entry for each unit in o3tl::Length"); // The resulting multipliers and divisors array constexpr auto aLengthMDArray = prepareMDArray(mdBaseLen); // an overload taking Length constexpr sal_Int64 md(Length i, Length j) { const int nI = static_cast(i), nJ = static_cast(j); assert(nI >= 0 && o3tl::make_unsigned(nI) < aLengthMDArray.size()); assert(nJ >= 0 && o3tl::make_unsigned(nJ) < aLengthMDArray.size()); return aLengthMDArray[nI][nJ]; } // here might go overloads of md() taking other units ... } // Unchecked conversion. Takes a number value, multiplier and divisor template constexpr auto convert(N n, sal_Int64 mul, sal_Int64 div) { return detail::MulDiv(n, mul, div); } // Unchecked conversion. Takes a number value and units defined in this header template constexpr auto convert(N n, U from, U to) { return convert(n, detail::md(from, to), detail::md(to, from)); } // Convert to twips - for convenience as we do this a lot template constexpr auto toTwips(N number, Length from) { return convert(number, from, Length::twip); } // Returns nDefault if intermediate multiplication overflows sal_Int64 (only for integral types). // On return, bOverflow indicates if overflow happened. nDefault is returned when overflow occurs. template constexpr auto convert(N n, U from, U to, bool& bOverflow, sal_Int64 nDefault = 0) { return detail::MulDiv(n, detail::md(from, to), detail::md(to, from), bOverflow, nDefault); } // Conversion with saturation (only for integral types). For too large input returns SAL_MAX_INT64. // When intermediate multiplication would overflow, but the end result is in sal_Int64 range, the // precision is decreased because of inversion of multiplication and division. template constexpr auto convertSaturate(N n, U from, U to) { return detail::MulDivSaturate(n, detail::md(from, to), detail::md(to, from)); } // Conversion with saturation (only for integral types), optimized for return types smaller than // sal_Int64. In this case, it's easier to clamp input values to known bounds, than to do some // preprocessing to handle too large input values, just to clamp the result anyway. Use it like: // // sal_Int32 n = convertNarrowing(m); template && std::is_integral_v && sizeof(Out) < sizeof(sal_Int64), int> = 0> constexpr Out convertNarrowing(N n) { constexpr sal_Int64 nMin = convertSaturate(std::numeric_limits::min(), to, from); constexpr sal_Int64 nMax = convertSaturate(std::numeric_limits::max(), to, from); if (static_cast(n) > nMax) return std::numeric_limits::max(); if (static_cast(n) < nMin) return std::numeric_limits::min(); return convert(n, from, to); } // Return a pair { multiplier, divisor } for a given conversion template constexpr std::pair getConversionMulDiv(U from, U to) { return { detail::md(from, to), detail::md(to, from) }; } } /* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */