/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #ifndef INCLUDED_SVX_SVDTRANS_HXX #define INCLUDED_SVX_SVDTRANS_HXX #include #include #include #include #include #include #include #include // The DrawingEngine's angles are specified in 1/100th degrees // We need to convert these angles to radians, in order to be able // to process them with trigonometric functions. // This is done, using the constant nPi180. // // Example usage: // nAngle ... is an angle in 1/100 Deg // // Which is converted, by this: // double nSin=sin(nAngle*nPi180); // // To convert it back, we use division. const double nPi=3.14159265358979323846; const double nPi180=0.000174532925199432957692222; // If we have too few digits, we get tan(4500*nPi180)!=1.0 // That maximum shear angle #define SDRMAXSHEAR 8900 class XPolygon; class XPolyPolygon; namespace svx { inline long Round(double a) { return a>0.0 ? (long)(a+0.5) : -(long)((-a)+0.5); } } inline void MoveRect(Rectangle& rRect, const Size& S) { rRect.Move(S.Width(),S.Height()); } inline void MovePoint(Point& rPnt, const Size& S) { rPnt.X()+=S.Width(); rPnt.Y()+=S.Height(); } inline void MovePoly(tools::Polygon& rPoly, const Size& S) { rPoly.Move(S.Width(),S.Height()); } void MoveXPoly(XPolygon& rPoly, const Size& S); SVX_DLLPUBLIC void ResizeRect(Rectangle& rRect, const Point& rRef, const Fraction& xFact, const Fraction& yFact); inline void ResizePoint(Point& rPnt, const Point& rRef, const Fraction& xFract, const Fraction& yFract); void ResizePoly(tools::Polygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact); void ResizeXPoly(XPolygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact); inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs); SVX_DLLPUBLIC void RotatePoly(tools::Polygon& rPoly, const Point& rRef, double sn, double cs); void RotateXPoly(XPolygon& rPoly, const Point& rRef, double sn, double cs); void RotateXPoly(XPolyPolygon& rPoly, const Point& rRef, double sn, double cs); void MirrorPoint(Point& rPnt, const Point& rRef1, const Point& rRef2); void MirrorXPoly(XPolygon& rPoly, const Point& rRef1, const Point& rRef2); inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear = false); SVX_DLLPUBLIC void ShearPoly(tools::Polygon& rPoly, const Point& rRef, double tn); void ShearXPoly(XPolygon& rPoly, const Point& rRef, double tn, bool bVShear = false); /** * rPnt.X/rPnt.Y is set to rCenter.X or rCenter.Y! * We then only need to rotate rPnt by rCenter. * * @return the returned angle is in rad */ inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical); /** * The following methods accept a point of an XPolygon, whereas the neighbouring * control points of the actual point are passed in pC1/pC2. * Via rSin/rCos, sin(nAngle) and cos(nAngle) are returned. * * @return the returned angle is in rad */ double CrookRotateXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter, const Point& rRad, double& rSin, double& rCos, bool bVert); double CrookSlantXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter, const Point& rRad, double& rSin, double& rCos, bool bVert); double CrookStretchXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter, const Point& rRad, double& rSin, double& rCos, bool bVert, const Rectangle& rRefRect); void CrookRotatePoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert); void CrookSlantPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert); void CrookStretchPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect); void CrookRotatePoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert); void CrookSlantPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert); void CrookStretchPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect); /**************************************************************************************************/ /* Inline */ /**************************************************************************************************/ inline void ResizePoint(Point& rPnt, const Point& rRef, const Fraction& xFract, const Fraction& yFract) { double nxFract = xFract.IsValid() ? static_cast(xFract) : 1.0; double nyFract = yFract.IsValid() ? static_cast(yFract) : 1.0; rPnt.X() = rRef.X() + svx::Round( (rPnt.X() - rRef.X()) * nxFract ); rPnt.Y() = rRef.Y() + svx::Round( (rPnt.Y() - rRef.Y()) * nyFract ); } inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs) { long dx=rPnt.X()-rRef.X(); long dy=rPnt.Y()-rRef.Y(); rPnt.X()=svx::Round(rRef.X()+dx*cs+dy*sn); rPnt.Y()=svx::Round(rRef.Y()+dy*cs-dx*sn); } inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear) { if (!bVShear) { // Horizontal if (rPnt.Y()!=rRef.Y()) { // else not needed rPnt.X()-=svx::Round((rPnt.Y()-rRef.Y())*tn); } } else { // or else vertical if (rPnt.X()!=rRef.X()) { // else not needed rPnt.Y()-=svx::Round((rPnt.X()-rRef.X())*tn); } } } inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical) { double nAngle; if (bVertical) { long dy=rPnt.Y()-rCenter.Y(); nAngle=(double)dy/(double)rRad.Y(); rPnt.Y()=rCenter.Y(); } else { long dx=rCenter.X()-rPnt.X(); nAngle=(double)dx/(double)rRad.X(); rPnt.X()=rCenter.X(); } return nAngle; } /**************************************************************************************************/ /**************************************************************************************************/ /** * The Y axis points down! * The function negates the Y axis, when calculating the angle, such * that GetAngle(Point(0,-1))=90 deg. * GetAngle(Point(0,0)) returns 0. * * @return the returned value is in the range of -180.00..179.99 deg * and is in 1/100 deg units */ SVX_DLLPUBLIC long GetAngle(const Point& rPnt); long NormAngle180(long a); /// Normalize angle to -180.00..179.99 SVX_DLLPUBLIC long NormAngle360(long a); /// Normalize angle to 0.00..359.99 sal_uInt16 GetAngleSector(long nAngle); /// Determine sector within the cartesian coordinate system /** * Calculates the length of (0,0) via a^2 + b^2 = c^2 * In order to avoid overflows, we ignore some decimal places. */ long GetLen(const Point& rPnt); /** * The transformation of a rectangle into a polygon, by * using angle parameters from GeoStat. ------------ * The point of reference is always the Point 0, meaning /1 2/ * the upper left corner of the initial rectangle. / / * When calculating the polygon, the order is first / / * shear and then the rotation. / / * / / \ * / / | * A) Initial rectangle aRect B) After applying Shear /0 3/ Rot| * +------------------+ -------------------- ------------------ * |0 1| \0 1\ C) After applying Rotate * | | \ \ * | | | \ \ * |3 2| | \3 2\ * +------------------+ | -------------------- * |Shr * * When converting the polygon back into a rect, the order is necessarily the * other way around: * - Calculating the rotation angle: angle of the line 0-1 in figure C) to the horizontal * - Turning the sheared rect back (we get figure B) * - Determining the width of the rect = length of the line 0-1 in figure B) * - Determining the height of the rect = vertical distance between the points 0 and 3 * of figure B) * - Determining the shear angle from the line 0-3 to the perpendicular line. * * We need to keep in mind that the polygon can be mirrored when it was * transformed in the mean time (e.g. mirror or resize with negative factor). * In that case, we first need to normalize, by swapping points (0 with 3 and 1 * with 2), so that it has the right orientation. * * Note: a positive shear angle means a shear with a positive visible curvature * on the screen. Mathematically, that would be a negative curvature, as the * Y axis runs from top to bottom on the screen. * Rotation angle: positive means a visible left rotation. */ class GeoStat { // Geometric state for a rect public: long nRotationAngle; long nShearAngle; double nTan; // tan(nShearAngle) double nSin; // sin(nRotationAngle) double nCos; // cos(nRotationAngle) GeoStat(): nRotationAngle(0),nShearAngle(0),nTan(0.0),nSin(0.0),nCos(1.0) {} void RecalcSinCos(); void RecalcTan(); }; tools::Polygon Rect2Poly(const Rectangle& rRect, const GeoStat& rGeo); void Poly2Rect(const tools::Polygon& rPol, Rectangle& rRect, GeoStat& rGeo); SVX_DLLPUBLIC void OrthoDistance8(const Point& rPt0, Point& rPt, bool bBigOrtho); SVX_DLLPUBLIC void OrthoDistance4(const Point& rPt0, Point& rPt, bool bBigOrtho); // Multiplication and subsequent division // Calculation and intermediate values are in BigInt SVX_DLLPUBLIC long BigMulDiv(long nVal, long nMul, long nDiv); class FrPair { Fraction aX; Fraction aY; public: FrPair(const Fraction& rBoth) : aX(rBoth),aY(rBoth) {} FrPair(const Fraction& rX, const Fraction& rY) : aX(rX),aY(rY) {} FrPair(long nMul, long nDiv) : aX(nMul,nDiv),aY(nMul,nDiv) {} FrPair(long xMul, long xDiv, long yMul, long yDiv): aX(xMul,xDiv),aY(yMul,yDiv) {} const Fraction& X() const { return aX; } const Fraction& Y() const { return aY; } Fraction& X() { return aX; } Fraction& Y() { return aY; } }; // To convert units of measurement SVX_DLLPUBLIC FrPair GetMapFactor(MapUnit eS, MapUnit eD); FrPair GetMapFactor(FieldUnit eS, FieldUnit eD); inline bool IsMetric(MapUnit eU) { return (eU==MapUnit::Map100thMM || eU==MapUnit::Map10thMM || eU==MapUnit::MapMM || eU==MapUnit::MapCM); } inline bool IsInch(MapUnit eU) { return (eU==MapUnit::Map1000thInch || eU==MapUnit::Map100thInch || eU==MapUnit::Map10thInch || eU==MapUnit::MapInch || eU==MapUnit::MapPoint || eU==MapUnit::MapTwip); } inline bool IsMetric(FieldUnit eU) { return (eU==FUNIT_MM || eU==FUNIT_CM || eU==FUNIT_M || eU==FUNIT_KM || eU==FUNIT_100TH_MM); } inline bool IsInch(FieldUnit eU) { return (eU==FUNIT_TWIP || eU==FUNIT_POINT || eU==FUNIT_PICA || eU==FUNIT_INCH || eU==FUNIT_FOOT || eU==FUNIT_MILE); } class SVX_DLLPUBLIC SdrFormatter { long nMul_; long nDiv_; short nKomma_; bool bDirty; MapUnit eSrcMU; MapUnit eDstMU; private: SVX_DLLPRIVATE void Undirty(); SVX_DLLPRIVATE void ForceUndirty() const { if (bDirty) const_cast(this)->Undirty(); } public: SdrFormatter(MapUnit eSrc, MapUnit eDst) : nMul_(0) , nDiv_(0) , nKomma_(0) , bDirty(true) , eSrcMU(eSrc) , eDstMU(eDst) { } void TakeStr(long nVal, OUString& rStr) const; static void TakeUnitStr(MapUnit eUnit, OUString& rStr); static void TakeUnitStr(FieldUnit eUnit, OUString& rStr); static OUString GetUnitStr(FieldUnit eUnit) { OUString aStr; TakeUnitStr(eUnit,aStr); return aStr; } }; #endif // INCLUDED_SVX_SVDTRANS_HXX /* vim:set shiftwidth=4 softtabstop=4 expandtab: */