/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #ifndef INCLUDED_VCL_BITMAP_HXX #define INCLUDED_VCL_BITMAP_HXX #include #include #include #include #include #include #include #include #include enum class BmpMirrorFlags { NONE = 0x00, Horizontal = 0x01, Vertical = 0x02, }; namespace o3tl { template<> struct typed_flags : is_typed_flags {}; } enum class BmpScaleFlag { NONE = 0, // Try to preferably use these. Default = 1, Fast = 2, BestQuality = 3, // Specific algorithms, use only if you really need to. Interpolate = 4, Super = 5, Lanczos = 6, BiCubic = 7, BiLinear = 8, Box = 9, }; enum class BmpDitherFlags { NONE = 0x0000, Matrix = 0x0001, Floyd = 0x0002, Floyd16 = 0x0004, }; namespace o3tl { template<> struct typed_flags : is_typed_flags {}; } enum class BmpVectorizeFlags { Inner = 0x0001, Outer = 0x0002, BoundOnly = 0x0004, ReduceEdges = 0x0008, }; namespace o3tl { template<> struct typed_flags : is_typed_flags {}; } #define BMP_COL_TRANS Color( 252, 3, 251 ) enum BmpConversion { BMP_CONVERSION_NONE = 0, BMP_CONVERSION_1BIT_THRESHOLD = 1, BMP_CONVERSION_1BIT_MATRIX = 2, BMP_CONVERSION_4BIT_GREYS = 3, BMP_CONVERSION_4BIT_COLORS = 4, BMP_CONVERSION_8BIT_GREYS = 5, BMP_CONVERSION_8BIT_COLORS = 6, BMP_CONVERSION_24BIT = 7, BMP_CONVERSION_4BIT_TRANS = 8, BMP_CONVERSION_8BIT_TRANS = 9, BMP_CONVERSION_GHOSTED = 10 }; enum BmpCombine { BMP_COMBINE_COPY = 0, BMP_COMBINE_INVERT = 1, BMP_COMBINE_AND = 2, BMP_COMBINE_NAND = 3, BMP_COMBINE_OR = 4, BMP_COMBINE_NOR = 5, BMP_COMBINE_XOR = 6, BMP_COMBINE_NXOR = 7 }; enum BmpReduce { BMP_REDUCE_SIMPLE = 0, BMP_REDUCE_POPULAR = 1, BMP_REDUCE_MEDIAN = 2 }; enum BmpEmboss { BMP_EMBOSS_TOPLEFT = 0, BMP_EMBOSS_TOP = 1, BMP_EMBOSS_TOPRIGHT = 2, BMP_EMBOSS_LEFT = 3, BMP_EMBOSS_MIDDLE = 4, BMP_EMBOSS_RIGHT = 5, BMP_EMBOSS_BOTTOMLEFT = 6, BMP_EMBOSS_BOTTOM = 7, BMP_EMBOSS_BOTTOMRIGHT = 8 }; enum BmpFilter { BMP_FILTER_SMOOTH = 0, BMP_FILTER_SHARPEN = 1, BMP_FILTER_REMOVENOISE = 2, BMP_FILTER_SOBEL_GREY = 3, BMP_FILTER_EMBOSS_GREY = 4, BMP_FILTER_SOLARIZE = 5, BMP_FILTER_SEPIA = 6, BMP_FILTER_MOSAIC = 7, BMP_FILTER_POPART = 8, BMP_FILTER_DUOTONE = 9, BMP_FILTER_UNKNOWN = 65535 }; class VCL_DLLPUBLIC BmpFilterParam { public: BmpFilterParam( sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_UNKNOWN ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ) {} BmpFilterParam( sal_uInt8 cSolarGreyThreshold, sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_SOLARIZE ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ), mcSolarGreyThreshold( cSolarGreyThreshold ) {} BmpFilterParam( double nRadius, sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_SMOOTH ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ), mnRadius( nRadius ) {} BmpFilterParam( sal_uInt16 nSepiaPercent, sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_SEPIA ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ), mnSepiaPercent( nSepiaPercent ) { assert(nSepiaPercent<=100); } BmpFilterParam( const Size& rMosaicTileSize, sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_MOSAIC ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ) { maMosaicTileSize.mnTileWidth = rMosaicTileSize.Width(); maMosaicTileSize.mnTileHeight= rMosaicTileSize.Height(); } BmpFilterParam( sal_uInt16 nEmbossAzimuthAngle100, sal_uInt16 nEmbossElevationAngle100, sal_uLong nProgressStart = 0, sal_uLong nProgressEnd = 0 ) : meFilter( BMP_FILTER_EMBOSS_GREY ), mnProgressStart( nProgressStart ), mnProgressEnd( nProgressEnd ) { maEmbossAngles.mnAzimuthAngle100 = nEmbossAzimuthAngle100; maEmbossAngles.mnElevationAngle100 = nEmbossElevationAngle100; } private: friend class ::Bitmap; friend class BitmapEx; friend class Animation; private: BmpFilter meFilter; sal_uLong mnProgressStart; sal_uLong mnProgressEnd; public: struct MosaicTileSize { sal_uLong mnTileWidth; sal_uLong mnTileHeight; }; struct EmbossAngles { sal_uInt16 mnAzimuthAngle100; sal_uInt16 mnElevationAngle100; }; private: union { sal_uInt16 mnSepiaPercent; sal_uInt8 mcSolarGreyThreshold; double mnRadius; MosaicTileSize maMosaicTileSize; EmbossAngles maEmbossAngles; }; }; class BitmapInfoAccess; class BitmapReadAccess; class BitmapWriteAccess; class BitmapPalette; class ImpBitmap; class Color; class ResId; class GDIMetaFile; class AlphaMask; class OutputDevice; class SalBitmap; namespace vcl { class Kernel; } struct BitmapSystemData { #if defined( WNT ) void* pDIB; // device independent byte buffer void* pDDB; // if not NULL then this is actually an HBITMAP #elif defined( MACOSX ) || defined( IOS ) void* rImageContext; //Image context (CGContextRef) #else void* aPixmap; #endif int mnWidth; int mnHeight; }; class VCL_DLLPUBLIC Bitmap { public: Bitmap(); Bitmap( const Bitmap& rBitmap ); Bitmap( const Size& rSizePixel, sal_uInt16 nBitCount, const BitmapPalette* pPal = nullptr ); Bitmap( const ResId& rResId ); Bitmap( SalBitmap* pSalBitmap ); virtual ~Bitmap(); Bitmap& operator=( const Bitmap& rBitmap ); inline bool operator!() const; inline bool operator==( const Bitmap& rBitmap ) const; inline bool operator!=( const Bitmap& rBitmap ) const; inline bool IsSameInstance( const Bitmap& rBmp ) const; bool IsEqual( const Bitmap& rBmp ) const; inline bool IsEmpty() const; void SetEmpty(); inline const MapMode& GetPrefMapMode() const; inline void SetPrefMapMode( const MapMode& rMapMode ); inline const Size& GetPrefSize() const; inline void SetPrefSize( const Size& rSize ); Size GetSizePixel() const; sal_uInt16 GetBitCount() const; inline sal_uLong GetColorCount() const; inline sal_uLong GetSizeBytes() const; bool HasGreyPalette() const; /** get system dependent bitmap data @param rData The system dependent BitmapSystemData structure to be filled @return true if the bitmap has a valid system object (e.g. not empty) */ bool GetSystemData( BitmapSystemData& rData ) const; BitmapChecksum GetChecksum() const; Bitmap CreateDisplayBitmap( OutputDevice* pDisplay ); static const BitmapPalette& GetGreyPalette( int nEntries ); public: bool MakeMono( sal_uInt8 cThreshold ); /** Convert bitmap format @param eConversion The format this bitmap should be converted to. @return true, if the conversion was completed successfully. */ bool Convert( BmpConversion eConversion ); /** Reduce number of colors for the bitmap @param nNewColorCount Maximal number of bitmap colors after the reduce operation @param eReduce Algorithm to use for color reduction @return true, if the color reduction operation was completed successfully. */ bool ReduceColors( sal_uInt16 nNewColorCount, BmpReduce eReduce = BMP_REDUCE_SIMPLE ); /** Apply a dither algorithm to the bitmap This method dithers the bitmap inplace, i.e. a true color bitmap is converted to a paletted bitmap, reducing the color deviation by error diffusion. @param nDitherFlags The algorithm to be used for dithering */ bool Dither( BmpDitherFlags nDitherFlags = BmpDitherFlags::Matrix ); /** Crop the bitmap @param rRectPixel A rectangle specifying the crop amounts on all four sides of the bitmap. If the upper left corner of the bitmap is assigned (0,0), then this method cuts out the given rectangle from the bitmap. Note that the rectangle is clipped to the bitmap's dimension, i.e. negative left,top rectangle coordinates or exceeding width or height is ignored. @return true, if cropping was performed successfully. If nothing had to be cropped, because e.g. the crop rectangle included the bitmap, false is returned, too! */ bool Crop( const Rectangle& rRectPixel ); /** Expand the bitmap by pixel padding @param nDX Number of pixel to pad at the right border of the bitmap @param nDY Number of scanlines to pad at the bottom border of the bitmap @param pInitColor Color to use for padded pixel @return true, if padding was performed successfully. false is not only returned when the operation failed, but also if nothing had to be done, e.g. because nDX and nDY were zero. */ bool Expand( sal_uLong nDX, sal_uLong nDY, const Color* pInitColor = nullptr ); /** Copy a rectangular area from another bitmap @param rRectDst Destination rectangle in this bitmap. This is clipped to the bitmap dimensions. @param rRectSrc Source rectangle in pBmpSrc. This is clipped to the source bitmap dimensions. Note further that no scaling takes place during this copy operation, i.e. only the minimum of source and destination rectangle's width and height are used. @param pBmpSrc The source bitmap to copy from. If this argument is NULL, or equal to the object this method is called on, copying takes place within the same bitmap. @return true, if the operation completed successfully. false is not only returned when the operation failed, but also if nothing had to be done, e.g. because one of the rectangles are empty. */ bool CopyPixel( const Rectangle& rRectDst, const Rectangle& rRectSrc, const Bitmap* pBmpSrc = nullptr ); bool CopyPixel_AlphaOptimized( const Rectangle& rRectDst, const Rectangle& rRectSrc, const Bitmap* pBmpSrc = nullptr ); /** Perform boolean operations with another bitmap @param rMask The mask bitmap in the selected combine operation @param eCombine The combine operation to perform on the bitmap @return true, if the operation was completed successfully. */ bool CombineSimple( const Bitmap& rMask, BmpCombine eCombine ); /** Alpha-blend the given bitmap against a specified uniform background color. @attention This method might convert paletted bitmaps to truecolor, to be able to represent every necessary color. Note that during alpha blending, lots of colors not originally included in the bitmap can be generated. @param rAlpha Alpha mask to blend with @param rBackgroundColor Background color to use for every pixel during alpha blending @return true, if blending was successful, false otherwise */ bool Blend( const AlphaMask& rAlpha, const Color& rBackgroundColor ); /** Fill the entire bitmap with the given color @param rFillColor Color value to use for filling @return true, if the operation was completed successfully. */ bool Erase( const Color& rFillColor ); /** Perform the Invert operation on every pixel @return true, if the operation was completed successfully. */ bool Invert(); /** Mirror the bitmap @param nMirrorFlags About which axis (horizontal, vertical, or both) to mirror @return true, if the operation was completed successfully. */ bool Mirror( BmpMirrorFlags nMirrorFlags ); /** Scale the bitmap @param rNewSize The resulting size of the scaled bitmap @param nScaleFlag The algorithm to be used for scaling @return true, if the operation was completed successfully. */ bool Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag = BmpScaleFlag::Default ); /** Scale the bitmap @param rScaleX The scale factor in x direction. @param rScaleY The scale factor in y direction. @param nScaleFlag Method of scaling - it is recommended that either BmpScaleFlag::Default or BmpScaleFlag::BestQuality be used. @return true, if the operation was completed successfully. */ bool Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag = BmpScaleFlag::Default ); /** Returns true if bitmap scaling is considered to be fast. Currently this returns true if OpenGL is used for scaling, otherwise false (CPU scaling is slower). @since 4.5 */ static bool HasFastScale(); // Adapt the BitCount of rNew to BitCount of total, including grey or color palette // Can be used to create alpha/mask bitmaps after their processing in 24bit void AdaptBitCount(Bitmap& rNew) const; /** Rotate bitmap by the specified angle @param nAngle10 The rotation angle in tenth of a degree. The bitmap is always rotated around its center. @param rFillColor The color to use for filling blank areas. During rotation, the bitmap is enlarged such that the whole rotation result fits in. The empty spaces around that rotated original bitmap are then filled with this color. @return true, if the operation was completed successfully. */ bool Rotate( long nAngle10, const Color& rFillColor ); /** Create on-off mask from bitmap This method creates a bitmask from the bitmap, where every pixel that equals rTransColor is set transparent, the rest opaque. @param rTransColor Color value where the bitmask should be transparent @param nTol Tolerance value. Specifies the maximal difference between rTransColor and the individual pixel values, such that the corresponding pixel is still regarded transparent. @return the resulting bitmask. */ Bitmap CreateMask( const Color& rTransColor, sal_uLong nTol = 0UL ) const; /** Create region of similar colors in a given rectangle @param rColor All pixel which have this color are included in the calculated region @param rRect The rectangle within which matching pixel are looked for. This rectangle is always clipped to the bitmap dimensions. @return the generated region. */ vcl::Region CreateRegion( const Color& rColor, const Rectangle& rRect ) const; /** Replace all pixel where the given mask is on with the specified color @param rMask Mask specifying which pixel should be replaced @param rReplaceColor Color to be placed in all changed pixel @return true, if the operation was completed successfully. */ bool Replace( const Bitmap& rMask, const Color& rReplaceColor ); /** Merge bitmap with given background color according to specified alpha mask @param rAlpha Alpha mask specifying the amount of background color to merge in @param rMergeColor Background color to be used for merging @return true, if the operation was completed successfully. */ bool Replace( const AlphaMask& rAlpha, const Color& rMergeColor ); /** Replace all pixel having the search color with the specified color @param rSearchColor Color specifying which pixel should be replaced @param rReplaceColor Color to be placed in all changed pixel @param nTol Tolerance value. Specifies the maximal difference between rSearchColor and the individual pixel values, such that the corresponding pixel is still regarded a match. @return true, if the operation was completed successfully. */ bool Replace( const Color& rSearchColor, const Color& rReplaceColor, sal_uLong nTol = 0 ); /** Replace all pixel having one the search colors with the corresponding replace color @param pSearchColors Array of colors specifying which pixel should be replaced @param rReplaceColors Array of colors to be placed in all changed pixel @param nColorCount Size of the aforementioned color arrays @param pTols Tolerance value. Specifies the maximal difference between pSearchColor colors and the individual pixel values, such that the corresponding pixel is still regarded a match. @return true, if the operation was completed successfully. */ bool Replace( const Color* pSearchColors, const Color* rReplaceColors, sal_uLong nColorCount, sal_uLong* pTols = nullptr ); /** Convert the bitmap to a PolyPolygon This works by putting continuous areas of the same color into a polygon, by tracing its bounding line. @param rPolyPoly The resulting PolyPolygon @param nFlags Whether the inline or the outline of the color areas should be represented by the polygon @return true, if the operation was completed successfully. */ bool Vectorize( tools::PolyPolygon& rPolyPoly, BmpVectorizeFlags nFlags = BmpVectorizeFlags::Outer ); /** Convert the bitmap to a meta file This works by putting continuous areas of the same color into polygons painted in this color, by tracing the area's bounding line. @param rMtf The resulting meta file @param cReduce If non-null, minimal size of bound rects for individual polygons. Smaller ones are ignored. @param nFlags Whether the inline or the outline of the color areas should be represented by the polygon @param pProgress A callback for showing the progress of the vectorization @return true, if the operation was completed successfully. */ bool Vectorize( GDIMetaFile& rMtf, sal_uInt8 cReduce = 0, BmpVectorizeFlags nFlags = BmpVectorizeFlags::Inner, const Link* pProgress = nullptr ); /** Change various global color characteristics @param nLuminancePercent Percent of luminance change, valid range [-100,100]. Values outside this range are clipped to the valid range. @param nContrastPercent Percent of contrast change, valid range [-100,100]. Values outside this range are clipped to the valid range. @param nChannelRPercent Percent of red channel change, valid range [-100,100]. Values outside this range are clipped to the valid range. @param nChannelGPercent Percent of green channel change, valid range [-100,100]. Values outside this range are clipped to the valid range. @param nChannelBPercent Percent of blue channel change, valid range [-100,100]. Values outside this range are clipped to the valid range. @param fGamma Exponent of the gamma function applied to the bitmap. The value 1.0 results in no change, the valid range is (0.0,10.0]. Values outside this range are regarded as 1.0. @param bInvert If true, invert the channel values with the logical 'not' operator @param msoBrightness Use the same formula for brightness as used by MSOffice. @return true, if the operation was completed successfully. */ bool Adjust( short nLuminancePercent = 0, short nContrastPercent = 0, short nChannelRPercent = 0, short nChannelGPercent = 0, short nChannelBPercent = 0, double fGamma = 1.0, bool bInvert = false, bool msoBrightness = false ); /** Apply specified filter to the bitmap @param eFilter The filter algorithm to apply @param pFilterParam Various parameter for the different bitmap filter algorithms @return true, if the operation was completed successfully. */ bool Filter( BmpFilter eFilter, const BmpFilterParam* pFilterParam = nullptr ); public: SAL_DLLPRIVATE void ImplMakeUnique(); std::shared_ptr ImplGetImpBitmap() const { return mxImpBmp;} SAL_DLLPRIVATE void ImplSetImpBitmap( std::shared_ptr xImpBmp ); SAL_DLLPRIVATE void ImplAssignWithSize( const Bitmap& rBitmap ); SAL_DLLPRIVATE void ImplAdaptBitCount(Bitmap& rNew) const; SAL_DLLPRIVATE bool ImplScaleFast( const double& rScaleX, const double& rScaleY ); SAL_DLLPRIVATE bool ImplScaleInterpolate( const double& rScaleX, const double& rScaleY ); SAL_DLLPRIVATE bool ImplConvolutionPass( Bitmap& aNewBitmap, BitmapReadAccess* pReadAcc, int aNumberOfContributions, double* pWeights, int* pPixels, int* pCount ); SAL_DLLPRIVATE bool ImplMakeMono( sal_uInt8 cThreshold ); SAL_DLLPRIVATE bool ImplMakeMonoDither(); SAL_DLLPRIVATE bool ImplMakeGreyscales( sal_uInt16 nGreyscales ); SAL_DLLPRIVATE bool ImplConvertUp( sal_uInt16 nBitCount, Color* pExtColor = nullptr ); SAL_DLLPRIVATE bool ImplConvertDown( sal_uInt16 nBitCount, Color* pExtColor = nullptr ); SAL_DLLPRIVATE bool ImplConvertGhosted(); SAL_DLLPRIVATE bool ImplDitherMatrix(); SAL_DLLPRIVATE bool ImplDitherFloyd(); SAL_DLLPRIVATE bool ImplDitherFloyd16(); SAL_DLLPRIVATE bool ImplReduceSimple( sal_uInt16 nColorCount ); SAL_DLLPRIVATE bool ImplReducePopular( sal_uInt16 nColorCount ); SAL_DLLPRIVATE bool ImplReduceMedian( sal_uInt16 nColorCount ); SAL_DLLPRIVATE void ImplMedianCut( sal_uLong* pColBuf, BitmapPalette& rPal, long nR1, long nR2, long nG1, long nG2, long nB1, long nB2, long nColors, long nPixels, long& rIndex ); SAL_DLLPRIVATE bool ImplConvolute3( const long* pMatrix, long nDivisor ); SAL_DLLPRIVATE bool ImplMedianFilter(); SAL_DLLPRIVATE bool ImplSobelGrey(); SAL_DLLPRIVATE bool ImplEmbossGrey( const BmpFilterParam* pFilterParam ); SAL_DLLPRIVATE bool ImplSolarize( const BmpFilterParam* pFilterParam ); SAL_DLLPRIVATE bool ImplSepia( const BmpFilterParam* pFilterParam ); SAL_DLLPRIVATE bool ImplMosaic( const BmpFilterParam* pFilterParam ); SAL_DLLPRIVATE bool ImplPopArt(); SAL_DLLPRIVATE bool ImplSeparableBlurFilter( const double aRadius = 0.7 ); SAL_DLLPRIVATE bool ImplSeparableUnsharpenFilter( const double aRadius = 0.7 ); SAL_DLLPRIVATE bool ImplDuotoneFilter( const sal_uLong nColorOne, sal_uLong nColorTwo ); SAL_DLLPRIVATE void ImplBlurContributions( const int aSize, const int aNumberOfContributions, double* pBlurVector, double*& pWeights, int*& pPixels, int*& pCount ); public: BitmapInfoAccess* AcquireInfoAccess(); BitmapReadAccess* AcquireReadAccess(); BitmapWriteAccess* AcquireWriteAccess(); static void ReleaseAccess( BitmapInfoAccess* pAccess ); typedef vcl::ScopedBitmapAccess ScopedReadAccess; typedef vcl::ScopedBitmapAccess ScopedWriteAccess; typedef vcl::ScopedBitmapAccess ScopedInfoAccess; private: std::shared_ptr mxImpBmp; MapMode maPrefMapMode; Size maPrefSize; }; inline bool Bitmap::operator!() const { return( mxImpBmp == nullptr ); } inline bool Bitmap::operator==( const Bitmap& rBitmap ) const { return( rBitmap.mxImpBmp == mxImpBmp ); } inline bool Bitmap::operator!=( const Bitmap& rBitmap ) const { return( rBitmap.mxImpBmp != mxImpBmp ); } inline bool Bitmap::IsSameInstance( const Bitmap& rBitmap ) const { return( rBitmap.mxImpBmp == mxImpBmp ); } inline bool Bitmap::IsEmpty() const { return( mxImpBmp == nullptr ); } inline const MapMode& Bitmap::GetPrefMapMode() const { return maPrefMapMode; } inline void Bitmap::SetPrefMapMode( const MapMode& rMapMode ) { maPrefMapMode = rMapMode; } inline const Size& Bitmap::GetPrefSize() const { return maPrefSize; } inline void Bitmap::SetPrefSize( const Size& rSize ) { maPrefSize = rSize; } inline sal_uLong Bitmap::GetColorCount() const { return( (sal_uLong)1 << (sal_uLong) GetBitCount() ); } inline sal_uLong Bitmap::GetSizeBytes() const { const Size aSizePix( GetSizePixel() ); return( ( (sal_uLong) aSizePix.Width() * aSizePix.Height() * GetBitCount() ) >> 3UL ); } #endif // INCLUDED_VCL_BITMAP_HXX /* vim:set shiftwidth=4 softtabstop=4 expandtab: */