/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "ManifestImport.hxx" #include "ManifestDefines.hxx" #include #include #include #include #include #include #include #include #include #include using namespace com::sun::star::uno; using namespace com::sun::star::beans; using namespace com::sun::star; constexpr OUStringLiteral gsFullPathProperty ( u"FullPath" ); constexpr OUStringLiteral gsMediaTypeProperty ( u"MediaType" ); constexpr OUStringLiteral gsVersionProperty ( u"Version" ); constexpr OUStringLiteral gsIterationCountProperty ( u"IterationCount" ); constexpr OUStringLiteral gsDerivedKeySizeProperty ( u"DerivedKeySize" ); constexpr OUStringLiteral gsSaltProperty ( u"Salt" ); constexpr OUStringLiteral gsInitialisationVectorProperty ( u"InitialisationVector" ); constexpr OUStringLiteral gsSizeProperty ( u"Size" ); constexpr OUStringLiteral gsDigestProperty ( u"Digest" ); constexpr OUString gsEncryptionAlgProperty ( u"EncryptionAlgorithm"_ustr ); constexpr OUString gsStartKeyAlgProperty ( u"StartKeyAlgorithm"_ustr ); constexpr OUString gsDigestAlgProperty ( u"DigestAlgorithm"_ustr ); ManifestImport::ManifestImport( std::vector < Sequence < PropertyValue > > & rNewManVector ) : bIgnoreEncryptData ( false ) , bPgpEncryption ( false ) , nDerivedKeySize( 0 ) , rManVector ( rNewManVector ) { aStack.reserve( 10 ); } ManifestImport::~ManifestImport() { } void SAL_CALL ManifestImport::startDocument( ) { } void SAL_CALL ManifestImport::endDocument( ) { } void ManifestImport::doFileEntry(StringHashMap &rConvertedAttribs) { aSequence.resize(PKG_SIZE_ENCR_MNFST); aSequence[PKG_MNFST_FULLPATH].Name = gsFullPathProperty; aSequence[PKG_MNFST_FULLPATH].Value <<= rConvertedAttribs[ATTRIBUTE_FULL_PATH]; aSequence[PKG_MNFST_MEDIATYPE].Name = gsMediaTypeProperty; aSequence[PKG_MNFST_MEDIATYPE].Value <<= rConvertedAttribs[ATTRIBUTE_MEDIA_TYPE]; OUString sVersion = rConvertedAttribs[ATTRIBUTE_VERSION]; if ( sVersion.getLength() ) { aSequence[PKG_MNFST_VERSION].Name = gsVersionProperty; aSequence[PKG_MNFST_VERSION].Value <<= sVersion; } OUString sSize = rConvertedAttribs[ATTRIBUTE_SIZE]; if ( sSize.getLength() ) { sal_Int64 nSize = sSize.toInt64(); aSequence[PKG_MNFST_UCOMPSIZE].Name = gsSizeProperty; aSequence[PKG_MNFST_UCOMPSIZE].Value <<= nSize; } } void ManifestImport::doEncryptedKey(StringHashMap &) { aKeyInfoSequence.clear(); aKeyInfoSequence.resize(3); } void ManifestImport::doEncryptionMethod(StringHashMap &rConvertedAttribs, const OUString& rAlgoAttrName) { OUString aString = rConvertedAttribs[rAlgoAttrName]; if ( aKeyInfoSequence.size() != 3 || aString != "http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p" ) { bIgnoreEncryptData = true; } } void ManifestImport::doEncryptedCipherValue() { if ( aKeyInfoSequence.size() == 3 ) { aKeyInfoSequence[2].Name = "CipherValue"; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aCurrentCharacters); aKeyInfoSequence[2].Value <<= aDecodeBuffer; aCurrentCharacters.setLength(0); // consumed } else bIgnoreEncryptData = true; } void ManifestImport::doEncryptedKeyId() { if ( aKeyInfoSequence.size() == 3 ) { aKeyInfoSequence[0].Name = "KeyId"; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aCurrentCharacters); aKeyInfoSequence[0].Value <<= aDecodeBuffer; aCurrentCharacters.setLength(0); // consumed } else bIgnoreEncryptData = true; } void ManifestImport::doEncryptedKeyPacket() { if ( aKeyInfoSequence.size() == 3 ) { aKeyInfoSequence[1].Name = "KeyPacket"; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aCurrentCharacters); aKeyInfoSequence[1].Value <<= aDecodeBuffer; aCurrentCharacters.setLength(0); // consumed } else bIgnoreEncryptData = true; } void ManifestImport::doEncryptionData(StringHashMap &rConvertedAttribs) { // If this element exists, then this stream is encrypted and we need // to import the initialisation vector, salt and iteration count used nDerivedKeySize = 0; OUString aString = rConvertedAttribs[ATTRIBUTE_CHECKSUM_TYPE]; if ( bIgnoreEncryptData ) return; if ( aString == SHA1_1K_NAME || aString == SHA1_1K_URL ) { aSequence[PKG_MNFST_DIGESTALG].Name = gsDigestAlgProperty; aSequence[PKG_MNFST_DIGESTALG].Value <<= xml::crypto::DigestID::SHA1_1K; } else if ( aString == SHA256_1K_URL ) { aSequence[PKG_MNFST_DIGESTALG].Name = gsDigestAlgProperty; aSequence[PKG_MNFST_DIGESTALG].Value <<= xml::crypto::DigestID::SHA256_1K; } // note: digest is now *optional* - expected not to be used with AEAD if (aSequence[PKG_MNFST_DIGESTALG].Value.hasValue()) { aString = rConvertedAttribs[ATTRIBUTE_CHECKSUM]; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aString); aSequence[PKG_MNFST_DIGEST].Name = gsDigestProperty; aSequence[PKG_MNFST_DIGEST].Value <<= aDecodeBuffer; } } void ManifestImport::doAlgorithm(StringHashMap &rConvertedAttribs) { if ( bIgnoreEncryptData ) return; OUString aString = rConvertedAttribs[ATTRIBUTE_ALGORITHM_NAME]; if ( aString == BLOWFISH_NAME || aString == BLOWFISH_URL ) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::BLOWFISH_CFB_8; } else if (aString == AESGCM256_URL) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_GCM_W3C; SAL_INFO_IF(nDerivedKeySize != 0 && nDerivedKeySize != 32, "package.manifest", "Unexpected derived key length!"); nDerivedKeySize = 32; } else if (aString == AESGCM192_URL) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_GCM_W3C; SAL_INFO_IF(nDerivedKeySize != 0 && nDerivedKeySize != 24, "package.manifest", "Unexpected derived key length!"); nDerivedKeySize = 24; } else if (aString == AESGCM128_URL) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_GCM_W3C; SAL_INFO_IF(nDerivedKeySize != 0 && nDerivedKeySize != 16, "package.manifest", "Unexpected derived key length!"); nDerivedKeySize = 16; } else if ( aString == AES256_URL ) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_CBC_W3C_PADDING; OSL_ENSURE( !nDerivedKeySize || nDerivedKeySize == 32, "Unexpected derived key length!" ); nDerivedKeySize = 32; } else if ( aString == AES192_URL ) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_CBC_W3C_PADDING; OSL_ENSURE( !nDerivedKeySize || nDerivedKeySize == 24, "Unexpected derived key length!" ); nDerivedKeySize = 24; } else if ( aString == AES128_URL ) { aSequence[PKG_MNFST_ENCALG].Name = gsEncryptionAlgProperty; aSequence[PKG_MNFST_ENCALG].Value <<= xml::crypto::CipherID::AES_CBC_W3C_PADDING; OSL_ENSURE( !nDerivedKeySize || nDerivedKeySize == 16, "Unexpected derived key length!" ); nDerivedKeySize = 16; } else bIgnoreEncryptData = true; if ( !bIgnoreEncryptData ) { aString = rConvertedAttribs[ATTRIBUTE_INITIALISATION_VECTOR]; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aString); aSequence[PKG_MNFST_INIVECTOR].Name = gsInitialisationVectorProperty; aSequence[PKG_MNFST_INIVECTOR].Value <<= aDecodeBuffer; } } void ManifestImport::doKeyDerivation(StringHashMap &rConvertedAttribs) { if ( bIgnoreEncryptData ) return; OUString aString = rConvertedAttribs[ATTRIBUTE_KEY_DERIVATION_NAME]; if (aString == PBKDF2_NAME || aString == PBKDF2_URL || aString == ARGON2ID_URL || aString == ARGON2ID_URL_LO) { aSequence[PKG_MNFST_KDF].Name = "KeyDerivationFunction"; if (aString == ARGON2ID_URL || aString == ARGON2ID_URL_LO) { aSequence[PKG_MNFST_KDF].Value <<= xml::crypto::KDFID::Argon2id; aString = rConvertedAttribs.find(ATTRIBUTE_ARGON2_T) != rConvertedAttribs.end() ? rConvertedAttribs[ATTRIBUTE_ARGON2_T] : rConvertedAttribs[ATTRIBUTE_ARGON2_T_LO]; sal_Int32 const t(aString.toInt32()); aString = rConvertedAttribs.find(ATTRIBUTE_ARGON2_M) != rConvertedAttribs.end() ? rConvertedAttribs[ATTRIBUTE_ARGON2_M] : rConvertedAttribs[ATTRIBUTE_ARGON2_M_LO]; sal_Int32 const m(aString.toInt32()); aString = rConvertedAttribs.find(ATTRIBUTE_ARGON2_P) != rConvertedAttribs.end() ? rConvertedAttribs[ATTRIBUTE_ARGON2_P] : rConvertedAttribs[ATTRIBUTE_ARGON2_P_LO]; sal_Int32 const p(aString.toInt32()); if (0 < t && 0 < m && 0 < p) { aSequence[PKG_MNFST_ARGON2ARGS].Name = "Argon2Args"; aSequence[PKG_MNFST_ARGON2ARGS].Value <<= uno::Sequence{t,m,p}; } else { SAL_INFO("package.manifest", "invalid argon2 arguments"); bIgnoreEncryptData = true; } } else { aSequence[PKG_MNFST_KDF].Value <<= xml::crypto::KDFID::PBKDF2; aString = rConvertedAttribs[ATTRIBUTE_ITERATION_COUNT]; aSequence[PKG_MNFST_ITERATION].Name = gsIterationCountProperty; aSequence[PKG_MNFST_ITERATION].Value <<= aString.toInt32(); } aString = rConvertedAttribs[ATTRIBUTE_SALT]; uno::Sequence < sal_Int8 > aDecodeBuffer; ::comphelper::Base64::decode(aDecodeBuffer, aString); aSequence[PKG_MNFST_SALT].Name = gsSaltProperty; aSequence[PKG_MNFST_SALT].Value <<= aDecodeBuffer; aString = rConvertedAttribs[ATTRIBUTE_KEY_SIZE]; if ( aString.getLength() ) { sal_Int32 nKey = aString.toInt32(); OSL_ENSURE( !nDerivedKeySize || nKey == nDerivedKeySize , "Provided derived key length differs from the expected one!" ); nDerivedKeySize = nKey; } else if ( !nDerivedKeySize ) nDerivedKeySize = 16; else if ( nDerivedKeySize != 16 ) OSL_ENSURE( false, "Default derived key length differs from the expected one!" ); aSequence[PKG_MNFST_DERKEYSIZE].Name = gsDerivedKeySizeProperty; aSequence[PKG_MNFST_DERKEYSIZE].Value <<= nDerivedKeySize; } else if ( bPgpEncryption ) { if (aString == "PGP") { aSequence[PKG_MNFST_KDF].Name = "KeyDerivationFunction"; aSequence[PKG_MNFST_KDF].Value <<= xml::crypto::KDFID::PGP_RSA_OAEP_MGF1P; } else { bIgnoreEncryptData = true; } } else bIgnoreEncryptData = true; } void ManifestImport::doStartKeyAlg(StringHashMap &rConvertedAttribs) { OUString aString = rConvertedAttribs[ATTRIBUTE_START_KEY_GENERATION_NAME]; if (aString == SHA256_URL || aString == SHA256_URL_ODF12) { aSequence[PKG_MNFST_STARTALG].Name = gsStartKeyAlgProperty; aSequence[PKG_MNFST_STARTALG].Value <<= xml::crypto::DigestID::SHA256; } else if ( aString == SHA1_NAME || aString == SHA1_URL ) { aSequence[PKG_MNFST_STARTALG].Name = gsStartKeyAlgProperty; aSequence[PKG_MNFST_STARTALG].Value <<= xml::crypto::DigestID::SHA1; } else bIgnoreEncryptData = true; } void SAL_CALL ManifestImport::startElement( const OUString& aName, const uno::Reference< xml::sax::XAttributeList >& xAttribs ) { StringHashMap aConvertedAttribs; OUString aConvertedName = PushNameAndNamespaces( aName, xAttribs, aConvertedAttribs ); size_t nLevel = aStack.size(); assert(nLevel >= 1); switch (nLevel) { case 1: { m_PackageVersion = aConvertedAttribs[ATTRIBUTE_VERSION]; if (aConvertedName != ELEMENT_MANIFEST) //manifest:manifest aStack.back().m_bValid = false; break; } case 2: { if (aConvertedName == ELEMENT_FILE_ENTRY) //manifest:file-entry doFileEntry(aConvertedAttribs); else if (aConvertedName == ELEMENT_MANIFEST_KEYINFO) //loext:keyinfo ; else if (aConvertedName == ELEMENT_ENCRYPTEDKEY13) //manifest:encrypted-key doEncryptedKey(aConvertedAttribs); else aStack.back().m_bValid = false; break; } case 3: { ManifestStack::reverse_iterator aIter = aStack.rbegin(); ++aIter; if (!aIter->m_bValid) aStack.back().m_bValid = false; else if (aConvertedName == ELEMENT_ENCRYPTION_DATA) //manifest:encryption-data doEncryptionData(aConvertedAttribs); else if (aConvertedName == ELEMENT_ENCRYPTEDKEY) //loext:encrypted-key doEncryptedKey(aConvertedAttribs); else if (aConvertedName == ELEMENT_ENCRYPTIONMETHOD13) //manifest:encryption-method doEncryptionMethod(aConvertedAttribs, ATTRIBUTE_ALGORITHM13); else if (aConvertedName == ELEMENT_MANIFEST13_KEYINFO) //manifest:keyinfo ; else if (aConvertedName == ELEMENT_CIPHERDATA13) //manifest:CipherData ; else aStack.back().m_bValid = false; break; } case 4: { ManifestStack::reverse_iterator aIter = aStack.rbegin(); ++aIter; if (!aIter->m_bValid) aStack.back().m_bValid = false; else if (aConvertedName == ELEMENT_ALGORITHM) //manifest:algorithm, doAlgorithm(aConvertedAttribs); else if (aConvertedName == ELEMENT_KEY_DERIVATION) //manifest:key-derivation, doKeyDerivation(aConvertedAttribs); else if (aConvertedName == ELEMENT_START_KEY_GENERATION) //manifest:start-key-generation doStartKeyAlg(aConvertedAttribs); else if (aConvertedName == ELEMENT_ENCRYPTIONMETHOD) //loext:encryption-method doEncryptionMethod(aConvertedAttribs, ATTRIBUTE_ALGORITHM); else if (aConvertedName == ELEMENT_ENCRYPTED_KEYINFO) //loext:KeyInfo ; else if (aConvertedName == ELEMENT_CIPHERDATA) //loext:CipherData ; else if (aConvertedName == ELEMENT_PGPDATA13) //manifest:PGPData ; else if (aConvertedName == ELEMENT_CIPHERVALUE13) //manifest:CipherValue // ciphervalue action happens on endElement aCurrentCharacters = ""; else aStack.back().m_bValid = false; break; } case 5: { ManifestStack::reverse_iterator aIter = aStack.rbegin(); ++aIter; if (!aIter->m_bValid) aStack.back().m_bValid = false; else if (aConvertedName == ELEMENT_PGPDATA) //loext:PGPData ; else if (aConvertedName == ELEMENT_CIPHERVALUE) //loext:CipherValue // ciphervalue action happens on endElement aCurrentCharacters = ""; else if (aConvertedName == ELEMENT_PGPKEYID13) //manifest:PGPKeyID // ciphervalue action happens on endElement aCurrentCharacters = ""; else if (aConvertedName == ELEMENT_PGPKEYPACKET13) //manifest:PGPKeyPacket // ciphervalue action happens on endElement aCurrentCharacters = ""; else aStack.back().m_bValid = false; break; } case 6: { ManifestStack::reverse_iterator aIter = aStack.rbegin(); ++aIter; if (!aIter->m_bValid) aStack.back().m_bValid = false; else if (aConvertedName == ELEMENT_PGPKEYID) //loext:PGPKeyID // ciphervalue action happens on endElement aCurrentCharacters = ""; else if (aConvertedName == ELEMENT_PGPKEYPACKET) //loext:PGPKeyPacket // ciphervalue action happens on endElement aCurrentCharacters = ""; else aStack.back().m_bValid = false; break; } default: aStack.back().m_bValid = false; break; } } namespace { bool isEmpty(const css::beans::PropertyValue &rProp) { return rProp.Name.isEmpty(); } } void SAL_CALL ManifestImport::endElement( const OUString& aName ) { size_t nLevel = aStack.size(); assert(nLevel >= 1); OUString aConvertedName = ConvertName( aName ); if ( aStack.empty() || aStack.rbegin()->m_aConvertedName != aConvertedName ) return; if ( aConvertedName == ELEMENT_FILE_ENTRY && aStack.back().m_bValid ) { // required for wholesome encryption: if there is no document and hence // no file-entry with a version attribute, send the package's version // with the first file-entry. // (note: the only case when a valid ODF document has no "/" entry with // a version is when it is ODF 1.0/1.1 and then it doesn't have the // package version either) if (rManVector.empty() && !m_PackageVersion.isEmpty() && !aSequence[PKG_MNFST_VERSION].Value.hasValue()) { aSequence[PKG_MNFST_VERSION].Name = u"Version"_ustr; aSequence[PKG_MNFST_VERSION].Value <<= m_PackageVersion; } // the first entry gets KeyInfo element if any, for PGP encryption if (!bIgnoreEncryptData && !aKeys.empty() && rManVector.empty()) { aSequence[PKG_MNFST_KEYINFO].Name = "KeyInfo"; aSequence[PKG_MNFST_KEYINFO].Value <<= comphelper::containerToSequence(aKeys); } std::erase_if(aSequence, isEmpty); bIgnoreEncryptData = false; rManVector.push_back ( comphelper::containerToSequence(aSequence) ); aSequence.clear(); } else if ( (aConvertedName == ELEMENT_ENCRYPTEDKEY || aConvertedName == ELEMENT_ENCRYPTEDKEY13) && aStack.back().m_bValid ) { if ( !bIgnoreEncryptData ) { aKeys.push_back( comphelper::containerToSequence(aKeyInfoSequence) ); bPgpEncryption = true; } aKeyInfoSequence.clear(); } // end element handling for elements with cdata switch (nLevel) { case 4: { if (aConvertedName == ELEMENT_CIPHERVALUE13) //manifest:CipherValue doEncryptedCipherValue(); else aStack.back().m_bValid = false; break; } case 5: { if (aConvertedName == ELEMENT_CIPHERVALUE) //loext:CipherValue doEncryptedCipherValue(); else if (aConvertedName == ELEMENT_PGPKEYID13) //manifest:PGPKeyID doEncryptedKeyId(); else if (aConvertedName == ELEMENT_PGPKEYPACKET13) //manifest:PGPKeyPacket doEncryptedKeyPacket(); else aStack.back().m_bValid = false; break; } case 6: { if (aConvertedName == ELEMENT_PGPKEYID) //loext:PGPKeyID doEncryptedKeyId(); else if (aConvertedName == ELEMENT_PGPKEYPACKET) //loext:PGPKeyPacket doEncryptedKeyPacket(); else aStack.back().m_bValid = false; break; } } aStack.pop_back(); } void SAL_CALL ManifestImport::characters( const OUString& aChars ) { aCurrentCharacters.append(aChars); } void SAL_CALL ManifestImport::ignorableWhitespace( const OUString& /*aWhitespaces*/ ) { } void SAL_CALL ManifestImport::processingInstruction( const OUString& /*aTarget*/, const OUString& /*aData*/ ) { } void SAL_CALL ManifestImport::setDocumentLocator( const uno::Reference< xml::sax::XLocator >& /*xLocator*/ ) { } OUString ManifestImport::PushNameAndNamespaces( const OUString& aName, const uno::Reference< xml::sax::XAttributeList >& xAttribs, StringHashMap& o_aConvertedAttribs ) { StringHashMap aNamespaces; ::std::vector< ::std::pair< OUString, OUString > > aAttribsStrs; if ( xAttribs.is() ) { sal_Int16 nAttrCount = xAttribs.is() ? xAttribs->getLength() : 0; aAttribsStrs.reserve( nAttrCount ); for( sal_Int16 nInd = 0; nInd < nAttrCount; nInd++ ) { OUString aAttrName = xAttribs->getNameByIndex( nInd ); OUString aAttrValue = xAttribs->getValueByIndex( nInd ); if ( aAttrName.getLength() >= 5 && aAttrName.startsWith("xmlns") && ( aAttrName.getLength() == 5 || aAttrName[5] == ':' ) ) { // this is a namespace declaration OUString aNsName( ( aAttrName.getLength() == 5 ) ? OUString() : aAttrName.copy( 6 ) ); aNamespaces[aNsName] = aAttrValue; } else { // this is no namespace declaration aAttribsStrs.emplace_back( aAttrName, aAttrValue ); } } } OUString aConvertedName = ConvertNameWithNamespace( aName, aNamespaces ); if ( !aConvertedName.getLength() ) aConvertedName = ConvertName( aName ); aStack.emplace_back( aConvertedName, std::move(aNamespaces) ); for (const std::pair & rAttribsStr : aAttribsStrs) { // convert the attribute names on filling o_aConvertedAttribs[ConvertName( rAttribsStr.first )] = rAttribsStr.second; } return aConvertedName; } OUString ManifestImport::ConvertNameWithNamespace( const OUString& aName, const StringHashMap& aNamespaces ) { OUString aNsAlias; OUString aPureName = aName; sal_Int32 nInd = aName.indexOf( ':' ); if ( nInd != -1 && nInd < aName.getLength() ) { aNsAlias = aName.copy( 0, nInd ); aPureName = aName.copy( nInd + 1 ); } OUString aResult; StringHashMap::const_iterator aIter = aNamespaces.find( aNsAlias ); if ( aIter != aNamespaces.end() && ( aIter->second == MANIFEST_NAMESPACE || aIter->second == MANIFEST_OASIS_NAMESPACE ) ) { // no check for manifest.xml consistency currently since the old versions have supported inconsistent documents as well aResult = MANIFEST_NSPREFIX + aPureName; } return aResult; } OUString ManifestImport::ConvertName( const OUString& aName ) { OUString aConvertedName; for ( ManifestStack::reverse_iterator aIter = aStack.rbegin(); !aConvertedName.getLength() && aIter != aStack.rend(); ++aIter ) { if ( !aIter->m_aNamespaces.empty() ) aConvertedName = ConvertNameWithNamespace( aName, aIter->m_aNamespaces ); } if ( !aConvertedName.getLength() ) aConvertedName = aName; return aConvertedName; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */