/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "blowfishcontext.hxx" #include "sha1context.hxx" #include #include #include "XUnbufferedStream.hxx" #include "XBufferedThreadedStream.hxx" #include #include #include #include "MemoryByteGrabber.hxx" #include using namespace com::sun::star; using namespace com::sun::star::io; using namespace com::sun::star::uno; using namespace com::sun::star::ucb; using namespace com::sun::star::lang; using namespace com::sun::star::packages; using namespace com::sun::star::packages::zip; using namespace com::sun::star::packages::zip::ZipConstants; using ZipUtils::Inflater; #if OSL_DEBUG_LEVEL > 0 #define THROW_WHERE SAL_WHERE #else #define THROW_WHERE "" #endif /** This class is used to read entries from a zip file */ ZipFile::ZipFile( const rtl::Reference& aMutexHolder, uno::Reference < XInputStream > const &xInput, const uno::Reference < XComponentContext > & rxContext, bool bInitialise ) : m_aMutexHolder( aMutexHolder ) , aGrabber( xInput ) , aInflater( true ) , xStream(xInput) , m_xContext ( rxContext ) , bRecoveryMode( false ) { if (bInitialise && readCEN() == -1 ) { aEntries.clear(); throw ZipException( "stream data looks to be broken" ); } } ZipFile::ZipFile( const rtl::Reference< comphelper::RefCountedMutex >& aMutexHolder, uno::Reference < XInputStream > const &xInput, const uno::Reference < XComponentContext > & rxContext, bool bInitialise, bool bForceRecovery) : m_aMutexHolder( aMutexHolder ) , aGrabber( xInput ) , aInflater( true ) , xStream(xInput) , m_xContext ( rxContext ) , bRecoveryMode( bForceRecovery ) { if (bInitialise) { if ( bForceRecovery ) { recover(); } else if ( readCEN() == -1 ) { aEntries.clear(); throw ZipException("stream data looks to be broken" ); } } } ZipFile::~ZipFile() { aEntries.clear(); } void ZipFile::setInputStream ( const uno::Reference < XInputStream >& xNewStream ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); xStream = xNewStream; aGrabber.setInputStream ( xStream ); } uno::Reference< xml::crypto::XDigestContext > ZipFile::StaticGetDigestContextForChecksum( const uno::Reference< uno::XComponentContext >& xArgContext, const ::rtl::Reference< EncryptionData >& xEncryptionData ) { uno::Reference< xml::crypto::XDigestContext > xDigestContext; if ( xEncryptionData->m_nCheckAlg == xml::crypto::DigestID::SHA256_1K ) { uno::Reference< uno::XComponentContext > xContext = xArgContext; if ( !xContext.is() ) xContext = comphelper::getProcessComponentContext(); uno::Reference< xml::crypto::XNSSInitializer > xDigestContextSupplier = xml::crypto::NSSInitializer::create( xContext ); xDigestContext.set( xDigestContextSupplier->getDigestContext( xEncryptionData->m_nCheckAlg, uno::Sequence< beans::NamedValue >() ), uno::UNO_SET_THROW ); } else if ( xEncryptionData->m_nCheckAlg == xml::crypto::DigestID::SHA1_1K ) { if (xEncryptionData->m_bTryWrongSHA1) { xDigestContext.set(StarOfficeSHA1DigestContext::Create(), uno::UNO_SET_THROW); } else { xDigestContext.set(CorrectSHA1DigestContext::Create(), uno::UNO_SET_THROW); } } return xDigestContext; } uno::Reference< xml::crypto::XCipherContext > ZipFile::StaticGetCipher( const uno::Reference< uno::XComponentContext >& xArgContext, const ::rtl::Reference< EncryptionData >& xEncryptionData, bool bEncrypt ) { uno::Reference< xml::crypto::XCipherContext > xResult; if (xEncryptionData->m_nDerivedKeySize < 0) { throw ZipIOException("Invalid derived key length!" ); } uno::Sequence< sal_Int8 > aDerivedKey( xEncryptionData->m_nDerivedKeySize ); if ( !xEncryptionData->m_nIterationCount && xEncryptionData->m_nDerivedKeySize == xEncryptionData->m_aKey.getLength() ) { // gpg4libre: no need to derive key, m_aKey is already // usable as symmetric session key aDerivedKey = xEncryptionData->m_aKey; } else if ( rtl_Digest_E_None != rtl_digest_PBKDF2( reinterpret_cast< sal_uInt8* >( aDerivedKey.getArray() ), aDerivedKey.getLength(), reinterpret_cast< const sal_uInt8 * > (xEncryptionData->m_aKey.getConstArray() ), xEncryptionData->m_aKey.getLength(), reinterpret_cast< const sal_uInt8 * > ( xEncryptionData->m_aSalt.getConstArray() ), xEncryptionData->m_aSalt.getLength(), xEncryptionData->m_nIterationCount ) ) { throw ZipIOException("Can not create derived key!" ); } if ( xEncryptionData->m_nEncAlg == xml::crypto::CipherID::AES_CBC_W3C_PADDING ) { uno::Reference< uno::XComponentContext > xContext = xArgContext; if ( !xContext.is() ) xContext = comphelper::getProcessComponentContext(); uno::Reference< xml::crypto::XNSSInitializer > xCipherContextSupplier = xml::crypto::NSSInitializer::create( xContext ); xResult = xCipherContextSupplier->getCipherContext( xEncryptionData->m_nEncAlg, aDerivedKey, xEncryptionData->m_aInitVector, bEncrypt, uno::Sequence< beans::NamedValue >() ); } else if ( xEncryptionData->m_nEncAlg == xml::crypto::CipherID::BLOWFISH_CFB_8 ) { xResult = BlowfishCFB8CipherContext::Create( aDerivedKey, xEncryptionData->m_aInitVector, bEncrypt ); } else { throw ZipIOException("Unknown cipher algorithm is requested!" ); } return xResult; } void ZipFile::StaticFillHeader( const ::rtl::Reference< EncryptionData >& rData, sal_Int64 nSize, const OUString& aMediaType, sal_Int8 * & pHeader ) { // I think it's safe to restrict vector and salt length to 2 bytes ! sal_Int16 nIVLength = static_cast < sal_Int16 > ( rData->m_aInitVector.getLength() ); sal_Int16 nSaltLength = static_cast < sal_Int16 > ( rData->m_aSalt.getLength() ); sal_Int16 nDigestLength = static_cast < sal_Int16 > ( rData->m_aDigest.getLength() ); sal_Int16 nMediaTypeLength = static_cast < sal_Int16 > ( aMediaType.getLength() * sizeof( sal_Unicode ) ); // First the header *(pHeader++) = ( n_ConstHeader >> 0 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 8 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 16 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 24 ) & 0xFF; // Then the version *(pHeader++) = ( n_ConstCurrentVersion >> 0 ) & 0xFF; *(pHeader++) = ( n_ConstCurrentVersion >> 8 ) & 0xFF; // Then the iteration Count sal_Int32 nIterationCount = rData->m_nIterationCount; *(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 24 ) & 0xFF); // FIXME64: need to handle larger sizes // Then the size: *(pHeader++) = static_cast< sal_Int8 >(( nSize >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nSize >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nSize >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nSize >> 24 ) & 0xFF); // Then the encryption algorithm sal_Int32 nEncAlgID = rData->m_nEncAlg; *(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 24 ) & 0xFF); // Then the checksum algorithm sal_Int32 nChecksumAlgID = rData->m_nCheckAlg; *(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 24 ) & 0xFF); // Then the derived key size sal_Int32 nDerivedKeySize = rData->m_nDerivedKeySize; *(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 24 ) & 0xFF); // Then the start key generation algorithm sal_Int32 nKeyAlgID = rData->m_nStartKeyGenID; *(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 8 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 16 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 24 ) & 0xFF); // Then the salt length *(pHeader++) = static_cast< sal_Int8 >(( nSaltLength >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nSaltLength >> 8 ) & 0xFF); // Then the IV length *(pHeader++) = static_cast< sal_Int8 >(( nIVLength >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nIVLength >> 8 ) & 0xFF); // Then the digest length *(pHeader++) = static_cast< sal_Int8 >(( nDigestLength >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nDigestLength >> 8 ) & 0xFF); // Then the mediatype length *(pHeader++) = static_cast< sal_Int8 >(( nMediaTypeLength >> 0 ) & 0xFF); *(pHeader++) = static_cast< sal_Int8 >(( nMediaTypeLength >> 8 ) & 0xFF); // Then the salt content memcpy ( pHeader, rData->m_aSalt.getConstArray(), nSaltLength ); pHeader += nSaltLength; // Then the IV content memcpy ( pHeader, rData->m_aInitVector.getConstArray(), nIVLength ); pHeader += nIVLength; // Then the digest content memcpy ( pHeader, rData->m_aDigest.getConstArray(), nDigestLength ); pHeader += nDigestLength; // Then the mediatype itself memcpy ( pHeader, aMediaType.getStr(), nMediaTypeLength ); pHeader += nMediaTypeLength; } bool ZipFile::StaticFillData ( ::rtl::Reference< BaseEncryptionData > const & rData, sal_Int32 &rEncAlg, sal_Int32 &rChecksumAlg, sal_Int32 &rDerivedKeySize, sal_Int32 &rStartKeyGenID, sal_Int32 &rSize, OUString& aMediaType, const uno::Reference< XInputStream >& rStream ) { bool bOk = false; const sal_Int32 nHeaderSize = n_ConstHeaderSize - 4; Sequence < sal_Int8 > aBuffer ( nHeaderSize ); if ( nHeaderSize == rStream->readBytes ( aBuffer, nHeaderSize ) ) { sal_Int16 nPos = 0; sal_Int8 *pBuffer = aBuffer.getArray(); sal_Int16 nVersion = pBuffer[nPos++] & 0xFF; nVersion |= ( pBuffer[nPos++] & 0xFF ) << 8; if ( nVersion == n_ConstCurrentVersion ) { sal_Int32 nCount = pBuffer[nPos++] & 0xFF; nCount |= ( pBuffer[nPos++] & 0xFF ) << 8; nCount |= ( pBuffer[nPos++] & 0xFF ) << 16; nCount |= ( pBuffer[nPos++] & 0xFF ) << 24; rData->m_nIterationCount = nCount; rSize = pBuffer[nPos++] & 0xFF; rSize |= ( pBuffer[nPos++] & 0xFF ) << 8; rSize |= ( pBuffer[nPos++] & 0xFF ) << 16; rSize |= ( pBuffer[nPos++] & 0xFF ) << 24; rEncAlg = pBuffer[nPos++] & 0xFF; rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 8; rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 16; rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 24; rChecksumAlg = pBuffer[nPos++] & 0xFF; rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 8; rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 16; rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 24; rDerivedKeySize = pBuffer[nPos++] & 0xFF; rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 8; rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 16; rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 24; rStartKeyGenID = pBuffer[nPos++] & 0xFF; rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 8; rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 16; rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 24; sal_Int16 nSaltLength = pBuffer[nPos++] & 0xFF; nSaltLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nIVLength = ( pBuffer[nPos++] & 0xFF ); nIVLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nDigestLength = pBuffer[nPos++] & 0xFF; nDigestLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nMediaTypeLength = pBuffer[nPos++] & 0xFF; nMediaTypeLength |= ( pBuffer[nPos++] & 0xFF ) << 8; if ( nSaltLength == rStream->readBytes ( aBuffer, nSaltLength ) ) { rData->m_aSalt.realloc ( nSaltLength ); memcpy ( rData->m_aSalt.getArray(), aBuffer.getConstArray(), nSaltLength ); if ( nIVLength == rStream->readBytes ( aBuffer, nIVLength ) ) { rData->m_aInitVector.realloc ( nIVLength ); memcpy ( rData->m_aInitVector.getArray(), aBuffer.getConstArray(), nIVLength ); if ( nDigestLength == rStream->readBytes ( aBuffer, nDigestLength ) ) { rData->m_aDigest.realloc ( nDigestLength ); memcpy ( rData->m_aDigest.getArray(), aBuffer.getConstArray(), nDigestLength ); if ( nMediaTypeLength == rStream->readBytes ( aBuffer, nMediaTypeLength ) ) { aMediaType = OUString( reinterpret_cast(aBuffer.getConstArray()), nMediaTypeLength / sizeof( sal_Unicode ) ); bOk = true; } } } } } } return bOk; } uno::Reference< XInputStream > ZipFile::StaticGetDataFromRawStream( const rtl::Reference< comphelper::RefCountedMutex >& aMutexHolder, const uno::Reference< uno::XComponentContext >& rxContext, const uno::Reference< XInputStream >& xStream, const ::rtl::Reference< EncryptionData > &rData ) { if ( !rData.is() ) throw ZipIOException("Encrypted stream without encryption data!" ); if ( !rData->m_aKey.getLength() ) throw packages::WrongPasswordException(THROW_WHERE ); uno::Reference< XSeekable > xSeek( xStream, UNO_QUERY ); if ( !xSeek.is() ) throw ZipIOException("The stream must be seekable!" ); // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not OSL_ENSURE( rData->m_aDigest.getLength(), "Can't detect password correctness without digest!" ); if ( rData->m_aDigest.getLength() ) { sal_Int32 nSize = sal::static_int_cast< sal_Int32 >( xSeek->getLength() ); if ( nSize > n_ConstDigestLength + 32 ) nSize = n_ConstDigestLength + 32; // skip header xSeek->seek( n_ConstHeaderSize + rData->m_aInitVector.getLength() + rData->m_aSalt.getLength() + rData->m_aDigest.getLength() ); // Only want to read enough to verify the digest Sequence < sal_Int8 > aReadBuffer ( nSize ); xStream->readBytes( aReadBuffer, nSize ); if ( !StaticHasValidPassword( rxContext, aReadBuffer, rData ) ) throw packages::WrongPasswordException(THROW_WHERE ); } return new XUnbufferedStream( aMutexHolder, xStream, rData ); } #if 0 // for debugging purposes void CheckSequence( const uno::Sequence< sal_Int8 >& aSequence ) { if ( aSequence.getLength() ) { sal_Int32* pPointer = *( (sal_Int32**)&aSequence ); sal_Int32 nSize = *( pPointer + 1 ); sal_Int32 nMemSize = *( pPointer - 2 ); sal_Int32 nUsedMemSize = ( nSize + 4 * sizeof( sal_Int32 ) ); OSL_ENSURE( nSize == aSequence.getLength() && nUsedMemSize + 7 - ( nUsedMemSize - 1 ) % 8 == nMemSize, "Broken Sequence!" ); } } #endif bool ZipFile::StaticHasValidPassword( const uno::Reference< uno::XComponentContext >& rxContext, const Sequence< sal_Int8 > &aReadBuffer, const ::rtl::Reference< EncryptionData > &rData ) { if ( !rData.is() || !rData->m_aKey.getLength() ) return false; bool bRet = false; uno::Reference< xml::crypto::XCipherContext > xCipher( StaticGetCipher( rxContext, rData, false ), uno::UNO_SET_THROW ); uno::Sequence< sal_Int8 > aDecryptBuffer; uno::Sequence< sal_Int8 > aDecryptBuffer2; try { aDecryptBuffer = xCipher->convertWithCipherContext( aReadBuffer ); aDecryptBuffer2 = xCipher->finalizeCipherContextAndDispose(); } catch( uno::Exception& ) { // decryption with padding will throw the exception in finalizing if the buffer represent only part of the stream // it is no problem, actually this is why we read 32 additional bytes ( two of maximal possible encryption blocks ) } if ( aDecryptBuffer2.getLength() ) { sal_Int32 nOldLen = aDecryptBuffer.getLength(); aDecryptBuffer.realloc( nOldLen + aDecryptBuffer2.getLength() ); memcpy( aDecryptBuffer.getArray() + nOldLen, aDecryptBuffer2.getArray(), aDecryptBuffer2.getLength() ); } if ( aDecryptBuffer.getLength() > n_ConstDigestLength ) aDecryptBuffer.realloc( n_ConstDigestLength ); uno::Sequence< sal_Int8 > aDigestSeq; uno::Reference< xml::crypto::XDigestContext > xDigestContext( StaticGetDigestContextForChecksum( rxContext, rData ), uno::UNO_SET_THROW ); xDigestContext->updateDigest( aDecryptBuffer ); aDigestSeq = xDigestContext->finalizeDigestAndDispose(); // If we don't have a digest, then we have to assume that the password is correct if ( rData->m_aDigest.getLength() != 0 && ( aDigestSeq.getLength() != rData->m_aDigest.getLength() || 0 != memcmp ( aDigestSeq.getConstArray(), rData->m_aDigest.getConstArray(), aDigestSeq.getLength() ) ) ) { // We should probably tell the user that the password they entered was wrong } else bRet = true; return bRet; } bool ZipFile::hasValidPassword ( ZipEntry const & rEntry, const ::rtl::Reference< EncryptionData >& rData ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); bool bRet = false; if ( rData.is() && rData->m_aKey.getLength() ) { css::uno::Reference < css::io::XSeekable > xSeek(xStream, UNO_QUERY_THROW); xSeek->seek( rEntry.nOffset ); sal_Int64 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize; // Only want to read enough to verify the digest if ( nSize > n_ConstDigestDecrypt ) nSize = n_ConstDigestDecrypt; Sequence < sal_Int8 > aReadBuffer ( nSize ); xStream->readBytes( aReadBuffer, nSize ); bRet = StaticHasValidPassword( m_xContext, aReadBuffer, rData ); } return bRet; } namespace { class XBufferedStream : public cppu::WeakImplHelper { std::vector maBytes; size_t mnPos; size_t remainingSize() const { return maBytes.size() - mnPos; } bool hasBytes() const { return mnPos < maBytes.size(); } public: XBufferedStream( const uno::Reference& xSrcStream ) : mnPos(0) { const sal_Int32 nBufSize = 8192; sal_Int32 nRemaining = xSrcStream->available(); sal_Int32 nRead = 0; maBytes.reserve(nRemaining); uno::Sequence aBuf(nBufSize); auto readAndCopy = [&]( sal_Int32 nReadSize ) -> sal_Int32 { sal_Int32 nBytes = xSrcStream->readBytes(aBuf, nReadSize); const sal_Int8* p = aBuf.getArray(); const sal_Int8* pEnd = p + nBytes; std::copy(p, pEnd, std::back_inserter(maBytes)); return nBytes; }; while (nRemaining > nBufSize) { const auto nBytes = readAndCopy(nBufSize); if (!nBytes) break; nRead += nBytes; nRemaining -= nBytes; } if (nRemaining) nRead += readAndCopy(nRemaining); maBytes.resize(nRead); } virtual sal_Int32 SAL_CALL readBytes( uno::Sequence& rData, sal_Int32 nBytesToRead ) override { if (!hasBytes()) return 0; sal_Int32 nReadSize = std::min(nBytesToRead, remainingSize()); rData.realloc(nReadSize); std::vector::const_iterator it = maBytes.cbegin(); std::advance(it, mnPos); for (sal_Int32 i = 0; i < nReadSize; ++i, ++it) rData[i] = *it; mnPos += nReadSize; return nReadSize; } virtual sal_Int32 SAL_CALL readSomeBytes( ::css::uno::Sequence& rData, sal_Int32 nMaxBytesToRead ) override { return readBytes(rData, nMaxBytesToRead); } virtual void SAL_CALL skipBytes( sal_Int32 nBytesToSkip ) override { if (!hasBytes()) return; mnPos += nBytesToSkip; } virtual sal_Int32 SAL_CALL available() override { if (!hasBytes()) return 0; return remainingSize(); } virtual void SAL_CALL closeInput() override { } }; } uno::Reference< XInputStream > ZipFile::createStreamForZipEntry( const rtl::Reference< comphelper::RefCountedMutex >& aMutexHolder, ZipEntry const & rEntry, const ::rtl::Reference< EncryptionData > &rData, sal_Int8 nStreamMode, bool bIsEncrypted, const bool bUseBufferedStream, const OUString& aMediaType ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); rtl::Reference< XUnbufferedStream > xSrcStream = new XUnbufferedStream( m_xContext, aMutexHolder, rEntry, xStream, rData, nStreamMode, bIsEncrypted, aMediaType, bRecoveryMode); if (!bUseBufferedStream) return xSrcStream.get(); uno::Reference xBufStream; static const sal_Int32 nThreadingThreshold = 10000; if( xSrcStream->available() > nThreadingThreshold ) xBufStream = new XBufferedThreadedStream(xSrcStream.get(), xSrcStream->getSize()); else xBufStream = new XBufferedStream(xSrcStream.get()); return xBufStream; } std::unique_ptr ZipFile::entries() { return std::make_unique(aEntries); } uno::Reference< XInputStream > ZipFile::getInputStream( ZipEntry& rEntry, const ::rtl::Reference< EncryptionData > &rData, bool bIsEncrypted, const rtl::Reference& aMutexHolder ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); // We want to return a rawStream if we either don't have a key or if the // key is wrong bool bNeedRawStream = rEntry.nMethod == STORED; // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not if ( bIsEncrypted && rData.is() && rData->m_aDigest.getLength() ) bNeedRawStream = !hasValidPassword ( rEntry, rData ); return createStreamForZipEntry ( aMutexHolder, rEntry, rData, bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA, bIsEncrypted ); } uno::Reference< XInputStream > ZipFile::getDataStream( ZipEntry& rEntry, const ::rtl::Reference< EncryptionData > &rData, bool bIsEncrypted, const rtl::Reference& aMutexHolder ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); // An exception must be thrown in case stream is encrypted and // there is no key or the key is wrong bool bNeedRawStream = false; if ( bIsEncrypted ) { // in case no digest is provided there is no way // to detect password correctness if ( !rData.is() ) throw ZipException("Encrypted stream without encryption data!" ); // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not OSL_ENSURE( rData->m_aDigest.getLength(), "Can't detect password correctness without digest!" ); if ( rData->m_aDigest.getLength() && !hasValidPassword ( rEntry, rData ) ) throw packages::WrongPasswordException(THROW_WHERE ); } else bNeedRawStream = ( rEntry.nMethod == STORED ); return createStreamForZipEntry ( aMutexHolder, rEntry, rData, bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA, bIsEncrypted ); } uno::Reference< XInputStream > ZipFile::getRawData( ZipEntry& rEntry, const ::rtl::Reference< EncryptionData >& rData, bool bIsEncrypted, const rtl::Reference& aMutexHolder, const bool bUseBufferedStream ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); return createStreamForZipEntry ( aMutexHolder, rEntry, rData, UNBUFF_STREAM_RAW, bIsEncrypted, bUseBufferedStream ); } uno::Reference< XInputStream > ZipFile::getWrappedRawStream( ZipEntry& rEntry, const ::rtl::Reference< EncryptionData >& rData, const OUString& aMediaType, const rtl::Reference& aMutexHolder ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); if ( !rData.is() ) throw packages::NoEncryptionException(THROW_WHERE ); if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); return createStreamForZipEntry ( aMutexHolder, rEntry, rData, UNBUFF_STREAM_WRAPPEDRAW, true, true, aMediaType ); } void ZipFile::readLOC( ZipEntry &rEntry ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); sal_Int64 nPos = -rEntry.nOffset; aGrabber.seek(nPos); sal_Int32 nTestSig = aGrabber.ReadInt32(); if (nTestSig != LOCSIG) throw ZipIOException("Invalid LOC header (bad signature)" ); // Ignore all (duplicated) information from the local file header. // various programs produced "broken" zip files; even LO at some point. // Just verify the path and calculate the data offset and otherwise // rely on the central directory info. aGrabber.ReadInt16(); //version aGrabber.ReadInt16(); //flag aGrabber.ReadInt16(); //how aGrabber.ReadInt32(); //time aGrabber.ReadInt32(); //crc aGrabber.ReadInt32(); //compressed size aGrabber.ReadInt32(); //size sal_Int16 nPathLen = aGrabber.ReadInt16(); sal_Int16 nExtraLen = aGrabber.ReadInt16(); rEntry.nOffset = aGrabber.getPosition() + nPathLen + nExtraLen; // FIXME64: need to read 64bit LOC bool bBroken = false; try { sal_Int16 nPathLenToRead = nPathLen; const sal_Int64 nBytesAvailable = aGrabber.getLength() - aGrabber.getPosition(); if (nPathLenToRead > nBytesAvailable) nPathLenToRead = nBytesAvailable; else if (nPathLenToRead < 0) nPathLenToRead = 0; // read always in UTF8, some tools seem not to set UTF8 bit uno::Sequence aNameBuffer(nPathLenToRead); sal_Int32 nRead = aGrabber.readBytes(aNameBuffer, nPathLenToRead); if (nRead < aNameBuffer.getLength()) aNameBuffer.realloc(nRead); OUString sLOCPath = OUString::intern( reinterpret_cast(aNameBuffer.getArray()), aNameBuffer.getLength(), RTL_TEXTENCODING_UTF8 ); if ( rEntry.nPathLen == -1 ) // the file was created { rEntry.nPathLen = nPathLen; rEntry.sPath = sLOCPath; } bBroken = rEntry.nPathLen != nPathLen || rEntry.sPath != sLOCPath; } catch(...) { bBroken = true; } if ( bBroken && !bRecoveryMode ) throw ZipIOException("The stream seems to be broken!" ); } sal_Int32 ZipFile::findEND() { // this method is called in constructor only, no need for mutex sal_Int32 nLength, nPos, nEnd; Sequence < sal_Int8 > aBuffer; try { nLength = static_cast (aGrabber.getLength()); if (nLength < ENDHDR) return -1; nPos = nLength - ENDHDR - ZIP_MAXNAMELEN; nEnd = nPos >= 0 ? nPos : 0 ; aGrabber.seek( nEnd ); auto nSize = nLength - nEnd; if (nSize != aGrabber.readBytes(aBuffer, nSize)) throw ZipException("Zip END signature not found!" ); const sal_Int8 *pBuffer = aBuffer.getConstArray(); nPos = nSize - ENDHDR; while ( nPos >= 0 ) { if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 5 && pBuffer[nPos+3] == 6 ) return nPos + nEnd; nPos--; } } catch ( IllegalArgumentException& ) { throw ZipException("Zip END signature not found!" ); } catch ( NotConnectedException& ) { throw ZipException("Zip END signature not found!" ); } catch ( BufferSizeExceededException& ) { throw ZipException("Zip END signature not found!" ); } throw ZipException("Zip END signature not found!" ); } sal_Int32 ZipFile::readCEN() { // this method is called in constructor only, no need for mutex sal_Int32 nCenPos = -1, nEndPos, nLocPos; sal_uInt16 nCount; try { nEndPos = findEND(); if (nEndPos == -1) return -1; aGrabber.seek(nEndPos + ENDTOT); sal_uInt16 nTotal = aGrabber.ReadUInt16(); sal_Int32 nCenLen = aGrabber.ReadInt32(); sal_Int32 nCenOff = aGrabber.ReadInt32(); if ( nTotal * CENHDR > nCenLen ) throw ZipException("invalid END header (bad entry count)" ); if ( nTotal > ZIP_MAXENTRIES ) throw ZipException("too many entries in ZIP File" ); if ( nCenLen < 0 || nCenLen > nEndPos ) throw ZipException("Invalid END header (bad central directory size)" ); nCenPos = nEndPos - nCenLen; if ( nCenOff < 0 || nCenOff > nCenPos ) throw ZipException("Invalid END header (bad central directory size)" ); nLocPos = nCenPos - nCenOff; aGrabber.seek( nCenPos ); Sequence < sal_Int8 > aCENBuffer ( nCenLen ); sal_Int64 nRead = aGrabber.readBytes ( aCENBuffer, nCenLen ); if ( static_cast < sal_Int64 > ( nCenLen ) != nRead ) throw ZipException ("Error reading CEN into memory buffer!" ); MemoryByteGrabber aMemGrabber(aCENBuffer); ZipEntry aEntry; sal_Int16 nCommentLen; for (nCount = 0 ; nCount < nTotal; nCount++) { sal_Int32 nTestSig = aMemGrabber.ReadInt32(); if ( nTestSig != CENSIG ) throw ZipException("Invalid CEN header (bad signature)" ); aMemGrabber.skipBytes ( 2 ); aEntry.nVersion = aMemGrabber.ReadInt16(); if ( ( aEntry.nVersion & 1 ) == 1 ) throw ZipException("Invalid CEN header (encrypted entry)" ); aEntry.nFlag = aMemGrabber.ReadInt16(); aEntry.nMethod = aMemGrabber.ReadInt16(); if ( aEntry.nMethod != STORED && aEntry.nMethod != DEFLATED) throw ZipException("Invalid CEN header (bad compression method)" ); aEntry.nTime = aMemGrabber.ReadInt32(); aEntry.nCrc = aMemGrabber.ReadInt32(); sal_uInt32 nCompressedSize = aMemGrabber.ReadUInt32(); sal_uInt32 nSize = aMemGrabber.ReadUInt32(); aEntry.nPathLen = aMemGrabber.ReadInt16(); aEntry.nExtraLen = aMemGrabber.ReadInt16(); nCommentLen = aMemGrabber.ReadInt16(); aMemGrabber.skipBytes ( 8 ); sal_uInt32 nOffset = aMemGrabber.ReadUInt32(); // FIXME64: need to read the 64bit header instead if ( nSize == 0xffffffff || nOffset == 0xffffffff || nCompressedSize == 0xffffffff ) { throw ZipException("PK64 zip file entry" ); } aEntry.nCompressedSize = nCompressedSize; aEntry.nSize = nSize; aEntry.nOffset = nOffset; aEntry.nOffset += nLocPos; aEntry.nOffset *= -1; if ( aEntry.nPathLen < 0 ) throw ZipException("unexpected name length" ); if ( nCommentLen < 0 ) throw ZipException("unexpected comment length" ); if ( aEntry.nExtraLen < 0 ) throw ZipException("unexpected extra header info length" ); if (aEntry.nPathLen > aMemGrabber.remainingSize()) throw ZipException("name too long"); // read always in UTF8, some tools seem not to set UTF8 bit aEntry.sPath = OUString::intern ( reinterpret_cast(aMemGrabber.getCurrentPos()), aEntry.nPathLen, RTL_TEXTENCODING_UTF8 ); if ( !::comphelper::OStorageHelper::IsValidZipEntryFileName( aEntry.sPath, true ) ) throw ZipException("Zip entry has an invalid name." ); aMemGrabber.skipBytes( aEntry.nPathLen + aEntry.nExtraLen + nCommentLen ); aEntries[aEntry.sPath] = aEntry; } if (nCount != nTotal) throw ZipException("Count != Total" ); } catch ( IllegalArgumentException & ) { // seek can throw this... nCenPos = -1; // make sure we return -1 to indicate an error } return nCenPos; } void ZipFile::recover() { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); sal_Int64 nLength; Sequence < sal_Int8 > aBuffer; try { nLength = aGrabber.getLength(); if (nLength < ENDHDR) return; aGrabber.seek( 0 ); const sal_Int64 nToRead = 32000; for( sal_Int64 nGenPos = 0; aGrabber.readBytes( aBuffer, nToRead ) && aBuffer.getLength() > 16; ) { const sal_Int8 *pBuffer = aBuffer.getConstArray(); sal_Int32 nBufSize = aBuffer.getLength(); sal_Int64 nPos = 0; // the buffer should contain at least one header, // or if it is end of the file, at least the postheader with sizes and hash while( nPos < nBufSize - 30 || ( nBufSize < nToRead && nPos < nBufSize - 16 ) ) { if ( nPos < nBufSize - 30 && pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 3 && pBuffer[nPos+3] == 4 ) { ZipEntry aEntry; Sequence aTmpBuffer(&(pBuffer[nPos+4]), 26); MemoryByteGrabber aMemGrabber(aTmpBuffer); aEntry.nVersion = aMemGrabber.ReadInt16(); if ( ( aEntry.nVersion & 1 ) != 1 ) { aEntry.nFlag = aMemGrabber.ReadInt16(); aEntry.nMethod = aMemGrabber.ReadInt16(); if ( aEntry.nMethod == STORED || aEntry.nMethod == DEFLATED ) { aEntry.nTime = aMemGrabber.ReadInt32(); aEntry.nCrc = aMemGrabber.ReadInt32(); sal_uInt32 nCompressedSize = aMemGrabber.ReadUInt32(); sal_uInt32 nSize = aMemGrabber.ReadUInt32(); aEntry.nPathLen = aMemGrabber.ReadInt16(); aEntry.nExtraLen = aMemGrabber.ReadInt16(); // FIXME64: need to read the 64bit header instead if ( nSize == 0xffffffff || nCompressedSize == 0xffffffff ) { throw ZipException("PK64 zip file entry" ); } aEntry.nCompressedSize = nCompressedSize; aEntry.nSize = nSize; sal_Int32 nDescrLength = ( aEntry.nMethod == DEFLATED && ( aEntry.nFlag & 8 ) ) ? 16 : 0; sal_Int64 nDataSize = ( aEntry.nMethod == DEFLATED ) ? aEntry.nCompressedSize : aEntry.nSize; sal_Int64 nBlockLength = nDataSize + aEntry.nPathLen + aEntry.nExtraLen + 30 + nDescrLength; if ( aEntry.nPathLen >= 0 && aEntry.nExtraLen >= 0 && ( nGenPos + nPos + nBlockLength ) <= nLength ) { // read always in UTF8, some tools seem not to set UTF8 bit if( nPos + 30 + aEntry.nPathLen <= nBufSize ) aEntry.sPath = OUString ( reinterpret_cast(&pBuffer[nPos + 30]), aEntry.nPathLen, RTL_TEXTENCODING_UTF8 ); else { Sequence < sal_Int8 > aFileName; aGrabber.seek( nGenPos + nPos + 30 ); aGrabber.readBytes( aFileName, aEntry.nPathLen ); aEntry.sPath = OUString ( reinterpret_cast(aFileName.getArray()), aFileName.getLength(), RTL_TEXTENCODING_UTF8 ); aEntry.nPathLen = static_cast< sal_Int16 >(aFileName.getLength()); } aEntry.nOffset = nGenPos + nPos + 30 + aEntry.nPathLen + aEntry.nExtraLen; if ( ( aEntry.nSize || aEntry.nCompressedSize ) && !checkSizeAndCRC( aEntry ) ) { aEntry.nCrc = 0; aEntry.nCompressedSize = 0; aEntry.nSize = 0; } aEntries.emplace( aEntry.sPath, aEntry ); } } } nPos += 4; } else if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 7 && pBuffer[nPos+3] == 8 ) { sal_Int64 nCompressedSize, nSize; Sequence aTmpBuffer(&(pBuffer[nPos+4]), 12); MemoryByteGrabber aMemGrabber(aTmpBuffer); sal_Int32 nCRC32 = aMemGrabber.ReadInt32(); sal_uInt32 nCompressedSize32 = aMemGrabber.ReadUInt32(); sal_uInt32 nSize32 = aMemGrabber.ReadUInt32(); // FIXME64: work to be done here ... nCompressedSize = nCompressedSize32; nSize = nSize32; for( auto& rEntry : aEntries ) { ZipEntry aTmp = rEntry.second; // this is a broken package, accept this block not only for DEFLATED streams if( rEntry.second.nFlag & 8 ) { sal_Int64 nStreamOffset = nGenPos + nPos - nCompressedSize; if ( nStreamOffset == rEntry.second.nOffset && nCompressedSize > rEntry.second.nCompressedSize ) { // only DEFLATED blocks need to be checked bool bAcceptBlock = ( rEntry.second.nMethod == STORED && nCompressedSize == nSize ); if ( !bAcceptBlock ) { sal_Int64 nRealSize = 0; sal_Int32 nRealCRC = 0; getSizeAndCRC( nStreamOffset, nCompressedSize, &nRealSize, &nRealCRC ); bAcceptBlock = ( nRealSize == nSize && nRealCRC == nCRC32 ); } if ( bAcceptBlock ) { rEntry.second.nCrc = nCRC32; rEntry.second.nCompressedSize = nCompressedSize; rEntry.second.nSize = nSize; } } #if 0 // for now ignore clearly broken streams else if( !rEntry.second.nCompressedSize ) { rEntry.second.nCrc = nCRC32; sal_Int32 nRealStreamSize = nGenPos + nPos - rEntry.second.nOffset; rEntry.second.nCompressedSize = nRealStreamSize; rEntry.second.nSize = nSize; } #endif } } nPos += 4; } else nPos++; } nGenPos += nPos; aGrabber.seek( nGenPos ); } } catch ( IllegalArgumentException& ) { throw ZipException("Zip END signature not found!" ); } catch ( NotConnectedException& ) { throw ZipException("Zip END signature not found!" ); } catch ( BufferSizeExceededException& ) { throw ZipException("Zip END signature not found!" ); } } bool ZipFile::checkSizeAndCRC( const ZipEntry& aEntry ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); sal_Int32 nCRC = 0; sal_Int64 nSize = 0; if( aEntry.nMethod == STORED ) return ( getCRC( aEntry.nOffset, aEntry.nSize ) == aEntry.nCrc ); getSizeAndCRC( aEntry.nOffset, aEntry.nCompressedSize, &nSize, &nCRC ); return ( aEntry.nSize == nSize && aEntry.nCrc == nCRC ); } sal_Int32 ZipFile::getCRC( sal_Int64 nOffset, sal_Int64 nSize ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); Sequence < sal_Int8 > aBuffer; CRC32 aCRC; sal_Int64 nBlockSize = ::std::min(nSize, static_cast< sal_Int64 >(32000)); aGrabber.seek( nOffset ); for (sal_Int64 ind = 0; aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nSize; ++ind) { sal_Int64 nLen = ::std::min(nBlockSize, nSize - ind * nBlockSize); aCRC.updateSegment(aBuffer, static_cast(nLen)); } return aCRC.getValue(); } void ZipFile::getSizeAndCRC( sal_Int64 nOffset, sal_Int64 nCompressedSize, sal_Int64 *nSize, sal_Int32 *nCRC ) { ::osl::MutexGuard aGuard( m_aMutexHolder->GetMutex() ); Sequence < sal_Int8 > aBuffer; CRC32 aCRC; sal_Int64 nRealSize = 0; Inflater aInflaterLocal( true ); sal_Int32 nBlockSize = static_cast< sal_Int32 > (::std::min( nCompressedSize, static_cast< sal_Int64 >( 32000 ) ) ); aGrabber.seek( nOffset ); for ( sal_Int64 ind = 0; !aInflaterLocal.finished() && aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nCompressedSize; ind++ ) { Sequence < sal_Int8 > aData( nBlockSize ); sal_Int32 nLastInflated = 0; sal_Int64 nInBlock = 0; aInflaterLocal.setInput( aBuffer ); do { nLastInflated = aInflaterLocal.doInflateSegment( aData, 0, nBlockSize ); aCRC.updateSegment( aData, nLastInflated ); nInBlock += nLastInflated; } while( !aInflater.finished() && nLastInflated ); nRealSize += nInBlock; } *nSize = nRealSize; *nCRC = aCRC.getValue(); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */