/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #define RTL_DIGEST_CREATE(T) (static_cast(rtl_allocateZeroMemory(sizeof(T)))) #define RTL_DIGEST_ROTL(a,n) (((a) << (n)) | ((a) >> (32 - (n)))) #define RTL_DIGEST_HTONL(l,c) \ (*((c)++) = static_cast(((l) >> 24) & 0xff), \ *((c)++) = static_cast(((l) >> 16) & 0xff), \ *((c)++) = static_cast(((l) >> 8) & 0xff), \ *((c)++) = static_cast(((l) ) & 0xff)) #define RTL_DIGEST_LTOC(l,c) \ *((c)++) = static_cast(((l) ) & 0xff); \ *((c)++) = static_cast(((l) >> 8) & 0xff); \ *((c)++) = static_cast(((l) >> 16) & 0xff); \ *((c)++) = static_cast(((l) >> 24) & 0xff); typedef rtlDigestError (Digest_init_t) ( void *ctx, const sal_uInt8 *Data, sal_uInt32 DatLen); typedef void (Digest_delete_t) (void *ctx); typedef rtlDigestError (Digest_update_t) ( void *ctx, const void *Data, sal_uInt32 DatLen); typedef rtlDigestError (Digest_get_t) ( void *ctx, sal_uInt8 *Buffer, sal_uInt32 BufLen); namespace { struct Digest_Impl { rtlDigestAlgorithm m_algorithm; sal_uInt32 m_length; Digest_init_t *m_init; Digest_delete_t *m_delete; Digest_update_t *m_update; Digest_get_t *m_get; }; } static void swapLong(sal_uInt32 *pData, sal_uInt32 nDatLen) { sal_uInt32 *X; int i, n; X = pData; n = nDatLen; for (i = 0; i < n; i++) { X[i] = OSL_SWAPDWORD(X[i]); } } rtlDigest SAL_CALL rtl_digest_create(rtlDigestAlgorithm Algorithm) noexcept { rtlDigest Digest = nullptr; switch (Algorithm) { case rtl_Digest_AlgorithmMD2: Digest = rtl_digest_createMD2(); break; case rtl_Digest_AlgorithmMD5: Digest = rtl_digest_createMD5(); break; case rtl_Digest_AlgorithmSHA: Digest = rtl_digest_createSHA(); break; case rtl_Digest_AlgorithmSHA1: Digest = rtl_digest_createSHA1(); break; case rtl_Digest_AlgorithmHMAC_MD5: Digest = rtl_digest_createHMAC_MD5(); break; case rtl_Digest_AlgorithmHMAC_SHA1: Digest = rtl_digest_createHMAC_SHA1(); break; default: /* rtl_Digest_AlgorithmInvalid */ break; } return Digest; } rtlDigestAlgorithm SAL_CALL rtl_digest_queryAlgorithm(rtlDigest Digest) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl) return pImpl->m_algorithm; return rtl_Digest_AlgorithmInvalid; } sal_uInt32 SAL_CALL rtl_digest_queryLength(rtlDigest Digest) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl) return pImpl->m_length; return 0; } rtlDigestError SAL_CALL rtl_digest_init( rtlDigest Digest, const sal_uInt8 *pData, sal_uInt32 nDatLen) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl) { if (pImpl->m_init) return pImpl->m_init (Digest, pData, nDatLen); return rtl_Digest_E_None; } return rtl_Digest_E_Argument; } rtlDigestError SAL_CALL rtl_digest_update( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl && pImpl->m_update) return pImpl->m_update(Digest, pData, nDatLen); return rtl_Digest_E_Argument; } rtlDigestError SAL_CALL rtl_digest_get( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl && pImpl->m_get) return pImpl->m_get(Digest, pBuffer, nBufLen); return rtl_Digest_E_Argument; } void SAL_CALL rtl_digest_destroy(rtlDigest Digest) noexcept { Digest_Impl *pImpl = static_cast(Digest); if (pImpl && pImpl->m_delete) pImpl->m_delete(Digest); } constexpr auto DIGEST_CBLOCK_MD2 = 16; constexpr auto DIGEST_LBLOCK_MD2 = 16; namespace { struct DigestContextMD2 { sal_uInt32 m_nDatLen; sal_uInt8 m_pData[DIGEST_CBLOCK_MD2]; sal_uInt32 m_state[DIGEST_LBLOCK_MD2]; sal_uInt32 m_chksum[DIGEST_LBLOCK_MD2]; }; struct DigestMD2_Impl { Digest_Impl m_digest; DigestContextMD2 m_context; }; } static void initMD2 (DigestContextMD2 *ctx); static void updateMD2 (DigestContextMD2 *ctx); static void endMD2 (DigestContextMD2 *ctx); const sal_uInt32 S[256] = { 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01, 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13, 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C, 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA, 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16, 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12, 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49, 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A, 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F, 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21, 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27, 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03, 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1, 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6, 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6, 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1, 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02, 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6, 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F, 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A, 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26, 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09, 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52, 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA, 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A, 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D, 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39, 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4, 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A, 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A, 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14, }; const Digest_Impl MD2 = { rtl_Digest_AlgorithmMD2, RTL_DIGEST_LENGTH_MD2, nullptr, rtl_digest_destroyMD2, rtl_digest_updateMD2, rtl_digest_getMD2 }; static void initMD2(DigestContextMD2 *ctx) { memset(ctx, 0, sizeof(DigestContextMD2)); } static void updateMD2(DigestContextMD2 *ctx) { sal_uInt8 *X; sal_uInt32 *sp1, *sp2; sal_uInt32 i, k, t; sal_uInt32 state[48]; X = ctx->m_pData; sp1 = ctx->m_state; sp2 = ctx->m_chksum; k = sp2[DIGEST_LBLOCK_MD2 - 1]; for (i = 0; i < 16; i++) { state[i + 0] = sp1[i]; state[i + 16] = t = X[i]; state[i + 32] = t ^ sp1[i]; k = sp2[i] ^= S[t^k]; } t = 0; for (i = 0; i < 18; i++) { for (k = 0; k < 48; k += 8) { t = state[k + 0] ^= S[t]; t = state[k + 1] ^= S[t]; t = state[k + 2] ^= S[t]; t = state[k + 3] ^= S[t]; t = state[k + 4] ^= S[t]; t = state[k + 5] ^= S[t]; t = state[k + 6] ^= S[t]; t = state[k + 7] ^= S[t]; } t = ((t + i) & 0xff); } memcpy(sp1, state, 16 * sizeof(sal_uInt32)); rtl_secureZeroMemory(state, 48 * sizeof(sal_uInt32)); } static void endMD2(DigestContextMD2 *ctx) { sal_uInt8 *X; sal_uInt32 *C; sal_uInt32 i, n; X = ctx->m_pData; C = ctx->m_chksum; n = DIGEST_CBLOCK_MD2 - ctx->m_nDatLen; for (i = ctx->m_nDatLen; i < DIGEST_CBLOCK_MD2; i++) X[i] = static_cast(n & 0xff); updateMD2(ctx); for (i = 0; i < DIGEST_CBLOCK_MD2; i++) X[i] = static_cast(C[i] & 0xff); updateMD2(ctx); } rtlDigestError SAL_CALL rtl_digest_MD2( const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestMD2_Impl digest; rtlDigestError result; digest.m_digest = MD2; initMD2(&(digest.m_context)); result = rtl_digest_updateMD2(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getMD2(&digest, pBuffer, nBufLen); rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createMD2() noexcept { DigestMD2_Impl *pImpl = RTL_DIGEST_CREATE(DigestMD2_Impl); if (pImpl) { pImpl->m_digest = MD2; initMD2(&(pImpl->m_context)); } return static_cast(pImpl); } rtlDigestError SAL_CALL rtl_digest_updateMD2( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestMD2_Impl *pImpl = static_cast(Digest); const sal_uInt8 *d = static_cast(pData); DigestContextMD2 *ctx; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD2) return rtl_Digest_E_Algorithm; if (nDatLen == 0) return rtl_Digest_E_None; ctx = &(pImpl->m_context); if (ctx->m_nDatLen) { sal_uInt8 *p = ctx->m_pData + ctx->m_nDatLen; sal_uInt32 n = DIGEST_CBLOCK_MD2 - ctx->m_nDatLen; if (nDatLen < n) { memcpy(p, d, nDatLen); ctx->m_nDatLen += nDatLen; return rtl_Digest_E_None; } memcpy(p, d, n); d += n; nDatLen -= n; updateMD2(ctx); ctx->m_nDatLen = 0; } while (nDatLen >= DIGEST_CBLOCK_MD2) { memcpy(ctx->m_pData, d, DIGEST_CBLOCK_MD2); d += DIGEST_CBLOCK_MD2; nDatLen -= DIGEST_CBLOCK_MD2; updateMD2(ctx); } memcpy(ctx->m_pData, d, nDatLen); ctx->m_nDatLen = nDatLen; return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getMD2( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestMD2_Impl *pImpl = static_cast(Digest); sal_uInt32 i; DigestContextMD2 *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD2) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; ctx = &(pImpl->m_context); endMD2(ctx); for (i = 0; i < DIGEST_CBLOCK_MD2; i++) { pBuffer[i] = static_cast(ctx->m_state[i] & 0xff); } initMD2(ctx); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroyMD2(rtlDigest Digest) noexcept { DigestMD2_Impl *pImpl = static_cast(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmMD2) rtl_freeZeroMemory(pImpl, sizeof(DigestMD2_Impl)); else free(pImpl); } } #define DIGEST_CBLOCK_MD5 64 #define DIGEST_LBLOCK_MD5 16 namespace { struct DigestContextMD5 { sal_uInt32 m_nDatLen; sal_uInt32 m_pData[DIGEST_LBLOCK_MD5]; sal_uInt32 m_nA, m_nB, m_nC, m_nD; sal_uInt32 m_nL, m_nH; }; struct DigestMD5_Impl { Digest_Impl m_digest; DigestContextMD5 m_context; }; } static void initMD5 (DigestContextMD5 *ctx); static void updateMD5 (DigestContextMD5 *ctx); static void endMD5 (DigestContextMD5 *ctx); #define F(x,y,z) ((((y) ^ (z)) & (x)) ^ (z)) #define G(x,y,z) ((((x) ^ (y)) & (z)) ^ (y)) #define H(x,y,z) ((x) ^ (y) ^ (z)) #define I(x,y,z) (((x) | (~(z))) ^ (y)) #define R0(a,b,c,d,k,s,t) { \ a += ((k) + (t) + F((b), (c), (d))); \ a = RTL_DIGEST_ROTL(a, s); \ a += b; } #define R1(a,b,c,d,k,s,t) { \ a += ((k) + (t) + G((b), (c), (d))); \ a = RTL_DIGEST_ROTL(a, s); \ a += b; } #define R2(a,b,c,d,k,s,t) { \ a += ((k) + (t) + H((b), (c), (d))); \ a = RTL_DIGEST_ROTL(a, s); \ a += b; } #define R3(a,b,c,d,k,s,t) { \ a += ((k) + (t) + I((b), (c), (d))); \ a = RTL_DIGEST_ROTL(a, s); \ a += b; } const Digest_Impl MD5 = { rtl_Digest_AlgorithmMD5, RTL_DIGEST_LENGTH_MD5, nullptr, rtl_digest_destroyMD5, rtl_digest_updateMD5, rtl_digest_getMD5 }; static void initMD5(DigestContextMD5 *ctx) { memset(ctx, 0, sizeof(DigestContextMD5)); ctx->m_nA = sal_uInt32(0x67452301L); ctx->m_nB = sal_uInt32(0xefcdab89L); ctx->m_nC = sal_uInt32(0x98badcfeL); ctx->m_nD = sal_uInt32(0x10325476L); } static void updateMD5(DigestContextMD5 *ctx) { sal_uInt32 A, B, C, D; sal_uInt32 *X; A = ctx->m_nA; B = ctx->m_nB; C = ctx->m_nC; D = ctx->m_nD; X = ctx->m_pData; R0 (A, B, C, D, X[ 0], 7, 0xd76aa478L); R0 (D, A, B, C, X[ 1], 12, 0xe8c7b756L); R0 (C, D, A, B, X[ 2], 17, 0x242070dbL); R0 (B, C, D, A, X[ 3], 22, 0xc1bdceeeL); R0 (A, B, C, D, X[ 4], 7, 0xf57c0fafL); R0 (D, A, B, C, X[ 5], 12, 0x4787c62aL); R0 (C, D, A, B, X[ 6], 17, 0xa8304613L); R0 (B, C, D, A, X[ 7], 22, 0xfd469501L); R0 (A, B, C, D, X[ 8], 7, 0x698098d8L); R0 (D, A, B, C, X[ 9], 12, 0x8b44f7afL); R0 (C, D, A, B, X[10], 17, 0xffff5bb1L); R0 (B, C, D, A, X[11], 22, 0x895cd7beL); R0 (A, B, C, D, X[12], 7, 0x6b901122L); R0 (D, A, B, C, X[13], 12, 0xfd987193L); R0 (C, D, A, B, X[14], 17, 0xa679438eL); R0 (B, C, D, A, X[15], 22, 0x49b40821L); R1 (A, B, C, D, X[ 1], 5, 0xf61e2562L); R1 (D, A, B, C, X[ 6], 9, 0xc040b340L); R1 (C, D, A, B, X[11], 14, 0x265e5a51L); R1 (B, C, D, A, X[ 0], 20, 0xe9b6c7aaL); R1 (A, B, C, D, X[ 5], 5, 0xd62f105dL); R1 (D, A, B, C, X[10], 9, 0x02441453L); R1 (C, D, A, B, X[15], 14, 0xd8a1e681L); R1 (B, C, D, A, X[ 4], 20, 0xe7d3fbc8L); R1 (A, B, C, D, X[ 9], 5, 0x21e1cde6L); R1 (D, A, B, C, X[14], 9, 0xc33707d6L); R1 (C, D, A, B, X[ 3], 14, 0xf4d50d87L); R1 (B, C, D, A, X[ 8], 20, 0x455a14edL); R1 (A, B, C, D, X[13], 5, 0xa9e3e905L); R1 (D, A, B, C, X[ 2], 9, 0xfcefa3f8L); R1 (C, D, A, B, X[ 7], 14, 0x676f02d9L); R1 (B, C, D, A, X[12], 20, 0x8d2a4c8aL); R2 (A, B, C, D, X[ 5], 4, 0xfffa3942L); R2 (D, A, B, C, X[ 8], 11, 0x8771f681L); R2 (C, D, A, B, X[11], 16, 0x6d9d6122L); R2 (B, C, D, A, X[14], 23, 0xfde5380cL); R2 (A, B, C, D, X[ 1], 4, 0xa4beea44L); R2 (D, A, B, C, X[ 4], 11, 0x4bdecfa9L); R2 (C, D, A, B, X[ 7], 16, 0xf6bb4b60L); R2 (B, C, D, A, X[10], 23, 0xbebfbc70L); R2 (A, B, C, D, X[13], 4, 0x289b7ec6L); R2 (D, A, B, C, X[ 0], 11, 0xeaa127faL); R2 (C, D, A, B, X[ 3], 16, 0xd4ef3085L); R2 (B, C, D, A, X[ 6], 23, 0x04881d05L); R2 (A, B, C, D, X[ 9], 4, 0xd9d4d039L); R2 (D, A, B, C, X[12], 11, 0xe6db99e5L); R2 (C, D, A, B, X[15], 16, 0x1fa27cf8L); R2 (B, C, D, A, X[ 2], 23, 0xc4ac5665L); R3 (A, B, C, D, X[ 0], 6, 0xf4292244L); R3 (D, A, B, C, X[ 7], 10, 0x432aff97L); R3 (C, D, A, B, X[14], 15, 0xab9423a7L); R3 (B, C, D, A, X[ 5], 21, 0xfc93a039L); R3 (A, B, C, D, X[12], 6, 0x655b59c3L); R3 (D, A, B, C, X[ 3], 10, 0x8f0ccc92L); R3 (C, D, A, B, X[10], 15, 0xffeff47dL); R3 (B, C, D, A, X[ 1], 21, 0x85845dd1L); R3 (A, B, C, D, X[ 8], 6, 0x6fa87e4fL); R3 (D, A, B, C, X[15], 10, 0xfe2ce6e0L); R3 (C, D, A, B, X[ 6], 15, 0xa3014314L); R3 (B, C, D, A, X[13], 21, 0x4e0811a1L); R3 (A, B, C, D, X[ 4], 6, 0xf7537e82L); R3 (D, A, B, C, X[11], 10, 0xbd3af235L); R3 (C, D, A, B, X[ 2], 15, 0x2ad7d2bbL); R3 (B, C, D, A, X[ 9], 21, 0xeb86d391L); ctx->m_nA += A; ctx->m_nB += B; ctx->m_nC += C; ctx->m_nD += D; } static void endMD5(DigestContextMD5 *ctx) { static const sal_uInt8 end[4] = { 0x80, 0x00, 0x00, 0x00 }; const sal_uInt8 *p = end; sal_uInt32 *X; int i; X = ctx->m_pData; i = (ctx->m_nDatLen >> 2); #ifdef OSL_BIGENDIAN swapLong(X, i + 1); #endif /* OSL_BIGENDIAN */ switch (ctx->m_nDatLen & 0x03) { case 1: X[i] &= 0x000000ff; break; case 2: X[i] &= 0x0000ffff; break; case 3: X[i] &= 0x00ffffff; break; } switch (ctx->m_nDatLen & 0x03) { case 0: X[i] = static_cast(*(p++)) << 0; [[fallthrough]]; case 1: X[i] |= static_cast(*(p++)) << 8; [[fallthrough]]; case 2: X[i] |= static_cast(*(p++)) << 16; [[fallthrough]]; case 3: X[i] |= static_cast(*p) << 24; } i += 1; if (i > (DIGEST_LBLOCK_MD5 - 2)) { for (; i < DIGEST_LBLOCK_MD5; i++) { X[i] = 0; } updateMD5(ctx); i = 0; } for (; i < (DIGEST_LBLOCK_MD5 - 2); i++) X[i] = 0; X[DIGEST_LBLOCK_MD5 - 2] = ctx->m_nL; X[DIGEST_LBLOCK_MD5 - 1] = ctx->m_nH; updateMD5(ctx); } rtlDigestError SAL_CALL rtl_digest_MD5( const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestMD5_Impl digest; rtlDigestError result; digest.m_digest = MD5; initMD5(&(digest.m_context)); result = rtl_digest_update(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getMD5(&digest, pBuffer, nBufLen); rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createMD5() noexcept { DigestMD5_Impl *pImpl = RTL_DIGEST_CREATE(DigestMD5_Impl); if (pImpl) { pImpl->m_digest = MD5; initMD5(&(pImpl->m_context)); } return static_cast(pImpl); } rtlDigestError SAL_CALL rtl_digest_updateMD5( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestMD5_Impl *pImpl = static_cast(Digest); const sal_uInt8 *d = static_cast(pData); DigestContextMD5 *ctx; sal_uInt32 len; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5) return rtl_Digest_E_Algorithm; if (nDatLen == 0) return rtl_Digest_E_None; ctx = &(pImpl->m_context); len = ctx->m_nL + (nDatLen << 3); if (len < ctx->m_nL) ctx->m_nH += 1; ctx->m_nH += (nDatLen >> 29); ctx->m_nL = len; if (ctx->m_nDatLen) { sal_uInt8 *p = reinterpret_cast(ctx->m_pData) + ctx->m_nDatLen; sal_uInt32 n = DIGEST_CBLOCK_MD5 - ctx->m_nDatLen; if (nDatLen < n) { memcpy(p, d, nDatLen); ctx->m_nDatLen += nDatLen; return rtl_Digest_E_None; } memcpy(p, d, n); d += n; nDatLen -= n; #ifdef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_MD5); #endif /* OSL_BIGENDIAN */ updateMD5(ctx); ctx->m_nDatLen = 0; } while (nDatLen >= DIGEST_CBLOCK_MD5) { memcpy(ctx->m_pData, d, DIGEST_CBLOCK_MD5); d += DIGEST_CBLOCK_MD5; nDatLen -= DIGEST_CBLOCK_MD5; #ifdef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_MD5); #endif /* OSL_BIGENDIAN */ updateMD5(ctx); } memcpy(ctx->m_pData, d, nDatLen); ctx->m_nDatLen = nDatLen; return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getMD5( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestMD5_Impl *pImpl = static_cast(Digest); sal_uInt8 *p = pBuffer; DigestContextMD5 *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; ctx = &(pImpl->m_context); endMD5(ctx); RTL_DIGEST_LTOC(ctx->m_nA, p); RTL_DIGEST_LTOC(ctx->m_nB, p); RTL_DIGEST_LTOC(ctx->m_nC, p); RTL_DIGEST_LTOC(ctx->m_nD, p); initMD5(ctx); return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_rawMD5( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestMD5_Impl *pImpl = static_cast(Digest); sal_uInt8 *p = pBuffer; DigestContextMD5 *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmMD5) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; ctx = &(pImpl->m_context); /* not finalized */ RTL_DIGEST_LTOC(ctx->m_nA, p); RTL_DIGEST_LTOC(ctx->m_nB, p); RTL_DIGEST_LTOC(ctx->m_nC, p); RTL_DIGEST_LTOC(ctx->m_nD, p); initMD5(ctx); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroyMD5(rtlDigest Digest) noexcept { DigestMD5_Impl *pImpl = static_cast(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmMD5) rtl_freeZeroMemory(pImpl, sizeof(DigestMD5_Impl)); else free(pImpl); } } #define DIGEST_CBLOCK_SHA 64 #define DIGEST_LBLOCK_SHA 16 typedef sal_uInt32 DigestSHA_update_t(sal_uInt32 x); static sal_uInt32 updateSHA_0(sal_uInt32 x); static sal_uInt32 updateSHA_1(sal_uInt32 x); namespace { struct DigestContextSHA { DigestSHA_update_t *m_update; sal_uInt32 m_nDatLen; sal_uInt32 m_pData[DIGEST_LBLOCK_SHA]; sal_uInt32 m_nA, m_nB, m_nC, m_nD, m_nE; sal_uInt32 m_nL, m_nH; }; struct DigestSHA_Impl { Digest_Impl m_digest; DigestContextSHA m_context; }; } static void initSHA( DigestContextSHA *ctx, DigestSHA_update_t *fct); static void updateSHA(DigestContextSHA *ctx); static void endSHA(DigestContextSHA *ctx); #define K_00_19 sal_uInt32(0x5a827999L) #define K_20_39 sal_uInt32(0x6ed9eba1L) #define K_40_59 sal_uInt32(0x8f1bbcdcL) #define K_60_79 sal_uInt32(0xca62c1d6L) #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) #define F_20_39(b,c,d) ((b) ^ (c) ^ (d)) #define F_40_59(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) #define F_60_79(b,c,d) F_20_39(b,c,d) #define BODY_X(i) \ (X[(i)&0x0f] ^ X[((i)+2)&0x0f] ^ X[((i)+8)&0x0f] ^ X[((i)+13)&0x0f]) #define BODY_00_15(u,i,a,b,c,d,e,f) \ (f) = X[i]; \ (f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \ (b) = RTL_DIGEST_ROTL((b), 30); #define BODY_16_19(u,i,a,b,c,d,e,f) \ (f) = BODY_X((i)); \ (f) = X[(i)&0x0f] = (u)((f)); \ (f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \ (b) = RTL_DIGEST_ROTL((b), 30); #define BODY_20_39(u,i,a,b,c,d,e,f) \ (f) = BODY_X((i)); \ (f) = X[(i)&0x0f] = (u)((f)); \ (f) += (e) + K_20_39 + RTL_DIGEST_ROTL((a), 5) + F_20_39((b), (c), (d)); \ (b) = RTL_DIGEST_ROTL((b), 30); #define BODY_40_59(u,i,a,b,c,d,e,f) \ (f) = BODY_X((i)); \ (f) = X[(i)&0x0f] = (u)((f)); \ (f) += (e) + K_40_59 + RTL_DIGEST_ROTL((a), 5) + F_40_59((b), (c), (d)); \ (b) = RTL_DIGEST_ROTL((b), 30); #define BODY_60_79(u,i,a,b,c,d,e,f) \ (f) = BODY_X((i)); \ (f) = X[(i)&0x0f] = (u)((f)); \ (f) += (e) + K_60_79 + RTL_DIGEST_ROTL((a), 5) + F_60_79((b), (c), (d)); \ (b) = RTL_DIGEST_ROTL((b), 30); static void initSHA( DigestContextSHA *ctx, DigestSHA_update_t *fct) { memset(ctx, 0, sizeof(DigestContextSHA)); ctx->m_update = fct; ctx->m_nA = sal_uInt32(0x67452301L); ctx->m_nB = sal_uInt32(0xefcdab89L); ctx->m_nC = sal_uInt32(0x98badcfeL); ctx->m_nD = sal_uInt32(0x10325476L); ctx->m_nE = sal_uInt32(0xc3d2e1f0L); } static void updateSHA(DigestContextSHA *ctx) { sal_uInt32 A, B, C, D, E, T; sal_uInt32 *X; DigestSHA_update_t *U; U = ctx->m_update; A = ctx->m_nA; B = ctx->m_nB; C = ctx->m_nC; D = ctx->m_nD; E = ctx->m_nE; X = ctx->m_pData; BODY_00_15 (U, 0, A, B, C, D, E, T); BODY_00_15 (U, 1, T, A, B, C, D, E); BODY_00_15 (U, 2, E, T, A, B, C, D); BODY_00_15 (U, 3, D, E, T, A, B, C); BODY_00_15 (U, 4, C, D, E, T, A, B); BODY_00_15 (U, 5, B, C, D, E, T, A); BODY_00_15 (U, 6, A, B, C, D, E, T); BODY_00_15 (U, 7, T, A, B, C, D, E); BODY_00_15 (U, 8, E, T, A, B, C, D); BODY_00_15 (U, 9, D, E, T, A, B, C); BODY_00_15 (U, 10, C, D, E, T, A, B); BODY_00_15 (U, 11, B, C, D, E, T, A); BODY_00_15 (U, 12, A, B, C, D, E, T); BODY_00_15 (U, 13, T, A, B, C, D, E); BODY_00_15 (U, 14, E, T, A, B, C, D); BODY_00_15 (U, 15, D, E, T, A, B, C); BODY_16_19 (U, 16, C, D, E, T, A, B); BODY_16_19 (U, 17, B, C, D, E, T, A); BODY_16_19 (U, 18, A, B, C, D, E, T); BODY_16_19 (U, 19, T, A, B, C, D, E); BODY_20_39 (U, 20, E, T, A, B, C, D); BODY_20_39 (U, 21, D, E, T, A, B, C); BODY_20_39 (U, 22, C, D, E, T, A, B); BODY_20_39 (U, 23, B, C, D, E, T, A); BODY_20_39 (U, 24, A, B, C, D, E, T); BODY_20_39 (U, 25, T, A, B, C, D, E); BODY_20_39 (U, 26, E, T, A, B, C, D); BODY_20_39 (U, 27, D, E, T, A, B, C); BODY_20_39 (U, 28, C, D, E, T, A, B); BODY_20_39 (U, 29, B, C, D, E, T, A); BODY_20_39 (U, 30, A, B, C, D, E, T); BODY_20_39 (U, 31, T, A, B, C, D, E); BODY_20_39 (U, 32, E, T, A, B, C, D); BODY_20_39 (U, 33, D, E, T, A, B, C); BODY_20_39 (U, 34, C, D, E, T, A, B); BODY_20_39 (U, 35, B, C, D, E, T, A); BODY_20_39 (U, 36, A, B, C, D, E, T); BODY_20_39 (U, 37, T, A, B, C, D, E); BODY_20_39 (U, 38, E, T, A, B, C, D); BODY_20_39 (U, 39, D, E, T, A, B, C); BODY_40_59 (U, 40, C, D, E, T, A, B); BODY_40_59 (U, 41, B, C, D, E, T, A); BODY_40_59 (U, 42, A, B, C, D, E, T); BODY_40_59 (U, 43, T, A, B, C, D, E); BODY_40_59 (U, 44, E, T, A, B, C, D); BODY_40_59 (U, 45, D, E, T, A, B, C); BODY_40_59 (U, 46, C, D, E, T, A, B); BODY_40_59 (U, 47, B, C, D, E, T, A); BODY_40_59 (U, 48, A, B, C, D, E, T); BODY_40_59 (U, 49, T, A, B, C, D, E); BODY_40_59 (U, 50, E, T, A, B, C, D); BODY_40_59 (U, 51, D, E, T, A, B, C); BODY_40_59 (U, 52, C, D, E, T, A, B); BODY_40_59 (U, 53, B, C, D, E, T, A); BODY_40_59 (U, 54, A, B, C, D, E, T); BODY_40_59 (U, 55, T, A, B, C, D, E); BODY_40_59 (U, 56, E, T, A, B, C, D); BODY_40_59 (U, 57, D, E, T, A, B, C); BODY_40_59 (U, 58, C, D, E, T, A, B); BODY_40_59 (U, 59, B, C, D, E, T, A); BODY_60_79 (U, 60, A, B, C, D, E, T); BODY_60_79 (U, 61, T, A, B, C, D, E); BODY_60_79 (U, 62, E, T, A, B, C, D); BODY_60_79 (U, 63, D, E, T, A, B, C); BODY_60_79 (U, 64, C, D, E, T, A, B); BODY_60_79 (U, 65, B, C, D, E, T, A); BODY_60_79 (U, 66, A, B, C, D, E, T); BODY_60_79 (U, 67, T, A, B, C, D, E); BODY_60_79 (U, 68, E, T, A, B, C, D); BODY_60_79 (U, 69, D, E, T, A, B, C); BODY_60_79 (U, 70, C, D, E, T, A, B); BODY_60_79 (U, 71, B, C, D, E, T, A); BODY_60_79 (U, 72, A, B, C, D, E, T); BODY_60_79 (U, 73, T, A, B, C, D, E); BODY_60_79 (U, 74, E, T, A, B, C, D); BODY_60_79 (U, 75, D, E, T, A, B, C); BODY_60_79 (U, 76, C, D, E, T, A, B); BODY_60_79 (U, 77, B, C, D, E, T, A); BODY_60_79 (U, 78, A, B, C, D, E, T); BODY_60_79 (U, 79, T, A, B, C, D, E); ctx->m_nA += E; ctx->m_nB += T; ctx->m_nC += A; ctx->m_nD += B; ctx->m_nE += C; } static void endSHA(DigestContextSHA *ctx) { static const sal_uInt8 end[4] = { 0x80, 0x00, 0x00, 0x00 }; const sal_uInt8 *p = end; sal_uInt32 *X; int i; X = ctx->m_pData; i = (ctx->m_nDatLen >> 2); #ifdef OSL_BIGENDIAN swapLong(X, i + 1); #endif /* OSL_BIGENDIAN */ switch (ctx->m_nDatLen & 0x03) { case 1: X[i] &= 0x000000ff; break; case 2: X[i] &= 0x0000ffff; break; case 3: X[i] &= 0x00ffffff; break; } switch (ctx->m_nDatLen & 0x03) { case 0: X[i] = static_cast(*(p++)) << 0; [[fallthrough]]; case 1: X[i] |= static_cast(*(p++)) << 8; [[fallthrough]]; case 2: X[i] |= static_cast(*(p++)) << 16; [[fallthrough]]; case 3: X[i] |= static_cast(*(p++)) << 24; } swapLong(X, i + 1); i += 1; // tdf#114939 NB: this is WRONG and should be ">" not ">=" but is not // fixed as this buggy SHA1 implementation is needed for compatibility if (i >= (DIGEST_LBLOCK_SHA - 2)) { for (; i < DIGEST_LBLOCK_SHA; i++) { X[i] = 0; } updateSHA(ctx); i = 0; } for (; i < (DIGEST_LBLOCK_SHA - 2); i++) { X[i] = 0; } X[DIGEST_LBLOCK_SHA - 2] = ctx->m_nH; X[DIGEST_LBLOCK_SHA - 1] = ctx->m_nL; updateSHA(ctx); } const Digest_Impl SHA_0 = { rtl_Digest_AlgorithmSHA, RTL_DIGEST_LENGTH_SHA, nullptr, rtl_digest_destroySHA, rtl_digest_updateSHA, rtl_digest_getSHA }; static sal_uInt32 updateSHA_0(sal_uInt32 x) { return x; } rtlDigestError SAL_CALL rtl_digest_SHA( const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestSHA_Impl digest; rtlDigestError result; digest.m_digest = SHA_0; initSHA(&(digest.m_context), updateSHA_0); result = rtl_digest_updateSHA(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getSHA(&digest, pBuffer, nBufLen); rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createSHA() noexcept { DigestSHA_Impl *pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl); if (pImpl) { pImpl->m_digest = SHA_0; initSHA(&(pImpl->m_context), updateSHA_0); } return static_cast(pImpl); } rtlDigestError SAL_CALL rtl_digest_updateSHA( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestSHA_Impl *pImpl = static_cast(Digest); const sal_uInt8 *d = static_cast(pData); DigestContextSHA *ctx; sal_uInt32 len; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA) return rtl_Digest_E_Algorithm; if (nDatLen == 0) return rtl_Digest_E_None; ctx = &(pImpl->m_context); len = ctx->m_nL + (nDatLen << 3); if (len < ctx->m_nL) ctx->m_nH += 1; ctx->m_nH += (nDatLen >> 29); ctx->m_nL = len; if (ctx->m_nDatLen) { sal_uInt8 *p = reinterpret_cast(ctx->m_pData) + ctx->m_nDatLen; sal_uInt32 n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen; if (nDatLen < n) { memcpy(p, d, nDatLen); ctx->m_nDatLen += nDatLen; return rtl_Digest_E_None; } memcpy(p, d, n); d += n; nDatLen -= n; #ifndef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA); #endif /* OSL_BIGENDIAN */ updateSHA(ctx); ctx->m_nDatLen = 0; } while (nDatLen >= DIGEST_CBLOCK_SHA) { memcpy(ctx->m_pData, d, DIGEST_CBLOCK_SHA); d += DIGEST_CBLOCK_SHA; nDatLen -= DIGEST_CBLOCK_SHA; #ifndef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA); #endif /* OSL_BIGENDIAN */ updateSHA(ctx); } memcpy(ctx->m_pData, d, nDatLen); ctx->m_nDatLen = nDatLen; return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getSHA( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestSHA_Impl *pImpl = static_cast(Digest); sal_uInt8 *p = pBuffer; DigestContextSHA *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; ctx = &(pImpl->m_context); endSHA(ctx); RTL_DIGEST_HTONL(ctx->m_nA, p); RTL_DIGEST_HTONL(ctx->m_nB, p); RTL_DIGEST_HTONL(ctx->m_nC, p); RTL_DIGEST_HTONL(ctx->m_nD, p); RTL_DIGEST_HTONL(ctx->m_nE, p); initSHA(ctx, updateSHA_0); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroySHA(rtlDigest Digest) noexcept { DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA) rtl_freeZeroMemory(pImpl, sizeof(DigestSHA_Impl)); else free(pImpl); } } const Digest_Impl SHA_1 = { rtl_Digest_AlgorithmSHA1, RTL_DIGEST_LENGTH_SHA1, nullptr, rtl_digest_destroySHA1, rtl_digest_updateSHA1, rtl_digest_getSHA1 }; static sal_uInt32 updateSHA_1(sal_uInt32 x) { return RTL_DIGEST_ROTL(x, 1); } rtlDigestError SAL_CALL rtl_digest_SHA1( const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestSHA_Impl digest; rtlDigestError result; digest.m_digest = SHA_1; initSHA(&(digest.m_context), updateSHA_1); result = rtl_digest_updateSHA1(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getSHA1(&digest, pBuffer, nBufLen); rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createSHA1() noexcept { DigestSHA_Impl *pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl); if (pImpl) { pImpl->m_digest = SHA_1; initSHA(&(pImpl->m_context), updateSHA_1); } return static_cast(pImpl); } rtlDigestError SAL_CALL rtl_digest_updateSHA1( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest); const sal_uInt8 *d = static_cast< const sal_uInt8 * >(pData); DigestContextSHA *ctx; sal_uInt32 len; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA1) return rtl_Digest_E_Algorithm; if (nDatLen == 0) return rtl_Digest_E_None; ctx = &(pImpl->m_context); len = ctx->m_nL + (nDatLen << 3); if (len < ctx->m_nL) ctx->m_nH += 1; ctx->m_nH += (nDatLen >> 29); ctx->m_nL = len; if (ctx->m_nDatLen) { sal_uInt8 *p = reinterpret_cast(ctx->m_pData) + ctx->m_nDatLen; sal_uInt32 n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen; if (nDatLen < n) { memcpy(p, d, nDatLen); ctx->m_nDatLen += nDatLen; return rtl_Digest_E_None; } memcpy(p, d, n); d += n; nDatLen -= n; #ifndef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA); #endif /* OSL_BIGENDIAN */ updateSHA(ctx); ctx->m_nDatLen = 0; } while (nDatLen >= DIGEST_CBLOCK_SHA) { memcpy(ctx->m_pData, d, DIGEST_CBLOCK_SHA); d += DIGEST_CBLOCK_SHA; nDatLen -= DIGEST_CBLOCK_SHA; #ifndef OSL_BIGENDIAN swapLong(ctx->m_pData, DIGEST_LBLOCK_SHA); #endif /* OSL_BIGENDIAN */ updateSHA(ctx); } memcpy(ctx->m_pData, d, nDatLen); ctx->m_nDatLen = nDatLen; return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getSHA1 ( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestSHA_Impl *pImpl = static_cast(Digest); sal_uInt8 *p = pBuffer; DigestContextSHA *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmSHA1) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; ctx = &(pImpl->m_context); endSHA(ctx); RTL_DIGEST_HTONL(ctx->m_nA, p); RTL_DIGEST_HTONL(ctx->m_nB, p); RTL_DIGEST_HTONL(ctx->m_nC, p); RTL_DIGEST_HTONL(ctx->m_nD, p); RTL_DIGEST_HTONL(ctx->m_nE, p); initSHA(ctx, updateSHA_1); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroySHA1(rtlDigest Digest) noexcept { DigestSHA_Impl *pImpl = static_cast< DigestSHA_Impl * >(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1) rtl_freeZeroMemory(pImpl, sizeof(DigestSHA_Impl)); else free(pImpl); } } #define DIGEST_CBLOCK_HMAC_MD5 64 namespace { struct ContextHMAC_MD5 { DigestMD5_Impl m_hash; sal_uInt8 m_opad[DIGEST_CBLOCK_HMAC_MD5]; }; struct DigestHMAC_MD5_Impl { Digest_Impl m_digest; ContextHMAC_MD5 m_context; }; } static void initHMAC_MD5(ContextHMAC_MD5 * ctx); static void ipadHMAC_MD5(ContextHMAC_MD5 * ctx); static void opadHMAC_MD5(ContextHMAC_MD5 * ctx); const Digest_Impl HMAC_MD5 = { rtl_Digest_AlgorithmHMAC_MD5, RTL_DIGEST_LENGTH_MD5, rtl_digest_initHMAC_MD5, rtl_digest_destroyHMAC_MD5, rtl_digest_updateHMAC_MD5, rtl_digest_getHMAC_MD5 }; static void initHMAC_MD5(ContextHMAC_MD5 * ctx) { DigestMD5_Impl *pImpl = &(ctx->m_hash); pImpl->m_digest = MD5; initMD5(&(pImpl->m_context)); memset(ctx->m_opad, 0, DIGEST_CBLOCK_HMAC_MD5); } static void ipadHMAC_MD5(ContextHMAC_MD5 * ctx) { sal_uInt32 i; for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++) { ctx->m_opad[i] ^= 0x36; } rtl_digest_updateMD5(&(ctx->m_hash), ctx->m_opad, DIGEST_CBLOCK_HMAC_MD5); for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++) { ctx->m_opad[i] ^= 0x36; } } static void opadHMAC_MD5(ContextHMAC_MD5 * ctx) { sal_uInt32 i; for (i = 0; i < DIGEST_CBLOCK_HMAC_MD5; i++) { ctx->m_opad[i] ^= 0x5c; } } rtlDigestError SAL_CALL rtl_digest_HMAC_MD5( const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen, const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestHMAC_MD5_Impl digest; rtlDigestError result; digest.m_digest = HMAC_MD5; result = rtl_digest_initHMAC_MD5(&digest, pKeyData, nKeyLen); if (result == rtl_Digest_E_None) { result = rtl_digest_updateHMAC_MD5(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getHMAC_MD5(&digest, pBuffer, nBufLen); } rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createHMAC_MD5() noexcept { DigestHMAC_MD5_Impl *pImpl = RTL_DIGEST_CREATE(DigestHMAC_MD5_Impl); if (pImpl) { pImpl->m_digest = HMAC_MD5; initHMAC_MD5(&(pImpl->m_context)); } return static_cast< rtlDigest >(pImpl); } rtlDigestError SAL_CALL rtl_digest_initHMAC_MD5( rtlDigest Digest, const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen) noexcept { DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest); ContextHMAC_MD5 *ctx; if (!pImpl || !pKeyData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5) return rtl_Digest_E_Algorithm; ctx = &(pImpl->m_context); initHMAC_MD5(ctx); if (nKeyLen > DIGEST_CBLOCK_HMAC_MD5) { /* Initialize 'opad' with hashed 'KeyData' */ rtl_digest_updateMD5(&(ctx->m_hash), pKeyData, nKeyLen); rtl_digest_getMD5(&(ctx->m_hash), ctx->m_opad, RTL_DIGEST_LENGTH_MD5); } else { /* Initialize 'opad' with plain 'KeyData' */ memcpy(ctx->m_opad, pKeyData, nKeyLen); } ipadHMAC_MD5(ctx); opadHMAC_MD5(ctx); return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_updateHMAC_MD5( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest); ContextHMAC_MD5 *ctx; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5) return rtl_Digest_E_Algorithm; ctx = &(pImpl->m_context); rtl_digest_updateMD5(&(ctx->m_hash), pData, nDatLen); return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getHMAC_MD5( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestHMAC_MD5_Impl *pImpl = static_cast(Digest); ContextHMAC_MD5 *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_MD5) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; nBufLen = pImpl->m_digest.m_length; ctx = &(pImpl->m_context); rtl_digest_getMD5(&(ctx->m_hash), pBuffer, nBufLen); rtl_digest_updateMD5(&(ctx->m_hash), ctx->m_opad, 64); rtl_digest_updateMD5(&(ctx->m_hash), pBuffer, nBufLen); rtl_digest_getMD5(&(ctx->m_hash), pBuffer, nBufLen); opadHMAC_MD5(ctx); ipadHMAC_MD5(ctx); opadHMAC_MD5(ctx); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroyHMAC_MD5(rtlDigest Digest) noexcept { DigestHMAC_MD5_Impl *pImpl = static_cast< DigestHMAC_MD5_Impl* >(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmHMAC_MD5) rtl_freeZeroMemory(pImpl, sizeof(DigestHMAC_MD5_Impl)); else free(pImpl); } } #define DIGEST_CBLOCK_HMAC_SHA1 64 namespace { struct ContextHMAC_SHA1 { DigestSHA_Impl m_hash; sal_uInt8 m_opad[DIGEST_CBLOCK_HMAC_SHA1]; }; struct DigestHMAC_SHA1_Impl { Digest_Impl m_digest; ContextHMAC_SHA1 m_context; }; } static void initHMAC_SHA1(ContextHMAC_SHA1 * ctx); static void ipadHMAC_SHA1(ContextHMAC_SHA1 * ctx); static void opadHMAC_SHA1(ContextHMAC_SHA1 * ctx); const Digest_Impl HMAC_SHA1 = { rtl_Digest_AlgorithmHMAC_SHA1, RTL_DIGEST_LENGTH_SHA1, rtl_digest_initHMAC_SHA1, rtl_digest_destroyHMAC_SHA1, rtl_digest_updateHMAC_SHA1, rtl_digest_getHMAC_SHA1 }; static void initHMAC_SHA1(ContextHMAC_SHA1 * ctx) { DigestSHA_Impl *pImpl = &(ctx->m_hash); pImpl->m_digest = SHA_1; initSHA(&(pImpl->m_context), updateSHA_1); memset(ctx->m_opad, 0, DIGEST_CBLOCK_HMAC_SHA1); } static void ipadHMAC_SHA1(ContextHMAC_SHA1 * ctx) { sal_uInt32 i; for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++) { ctx->m_opad[i] ^= 0x36; } rtl_digest_updateSHA1(&(ctx->m_hash), ctx->m_opad, DIGEST_CBLOCK_HMAC_SHA1); for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++) { ctx->m_opad[i] ^= 0x36; } } static void opadHMAC_SHA1(ContextHMAC_SHA1 * ctx) { sal_uInt32 i; for (i = 0; i < DIGEST_CBLOCK_HMAC_SHA1; i++) { ctx->m_opad[i] ^= 0x5c; } } rtlDigestError SAL_CALL rtl_digest_HMAC_SHA1( const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen, const void *pData, sal_uInt32 nDatLen, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestHMAC_SHA1_Impl digest; rtlDigestError result; digest.m_digest = HMAC_SHA1; result = rtl_digest_initHMAC_SHA1(&digest, pKeyData, nKeyLen); if (result == rtl_Digest_E_None) { result = rtl_digest_updateHMAC_SHA1(&digest, pData, nDatLen); if (result == rtl_Digest_E_None) result = rtl_digest_getHMAC_SHA1(&digest, pBuffer, nBufLen); } rtl_secureZeroMemory(&digest, sizeof(digest)); return result; } rtlDigest SAL_CALL rtl_digest_createHMAC_SHA1() noexcept { DigestHMAC_SHA1_Impl *pImpl = RTL_DIGEST_CREATE(DigestHMAC_SHA1_Impl); if (pImpl) { pImpl->m_digest = HMAC_SHA1; initHMAC_SHA1(&(pImpl->m_context)); } return static_cast(pImpl); } rtlDigestError SAL_CALL rtl_digest_initHMAC_SHA1( rtlDigest Digest, const sal_uInt8 *pKeyData, sal_uInt32 nKeyLen) noexcept { DigestHMAC_SHA1_Impl *pImpl = static_cast(Digest); ContextHMAC_SHA1 *ctx; if (!pImpl || !pKeyData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1) return rtl_Digest_E_Algorithm; ctx = &(pImpl->m_context); initHMAC_SHA1(ctx); if (nKeyLen > DIGEST_CBLOCK_HMAC_SHA1) { /* Initialize 'opad' with hashed 'KeyData' */ rtl_digest_updateSHA1(&(ctx->m_hash), pKeyData, nKeyLen); rtl_digest_getSHA1(&(ctx->m_hash), ctx->m_opad, RTL_DIGEST_LENGTH_SHA1); } else { /* Initialize 'opad' with plain 'KeyData' */ memcpy(ctx->m_opad, pKeyData, nKeyLen); } ipadHMAC_SHA1(ctx); opadHMAC_SHA1(ctx); return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_updateHMAC_SHA1( rtlDigest Digest, const void *pData, sal_uInt32 nDatLen) noexcept { DigestHMAC_SHA1_Impl *pImpl = static_cast(Digest); ContextHMAC_SHA1 *ctx; if (!pImpl || !pData) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1) return rtl_Digest_E_Algorithm; ctx = &(pImpl->m_context); rtl_digest_updateSHA1(&(ctx->m_hash), pData, nDatLen); return rtl_Digest_E_None; } rtlDigestError SAL_CALL rtl_digest_getHMAC_SHA1( rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen) noexcept { DigestHMAC_SHA1_Impl *pImpl = static_cast(Digest); ContextHMAC_SHA1 *ctx; if (!pImpl || !pBuffer) return rtl_Digest_E_Argument; if (pImpl->m_digest.m_algorithm != rtl_Digest_AlgorithmHMAC_SHA1) return rtl_Digest_E_Algorithm; if (pImpl->m_digest.m_length > nBufLen) return rtl_Digest_E_BufferSize; nBufLen = pImpl->m_digest.m_length; ctx = &(pImpl->m_context); rtl_digest_getSHA1(&(ctx->m_hash), pBuffer, nBufLen); rtl_digest_updateSHA1(&(ctx->m_hash), ctx->m_opad, sizeof(ctx->m_opad)); rtl_digest_updateSHA1(&(ctx->m_hash), pBuffer, nBufLen); rtl_digest_getSHA1(&(ctx->m_hash), pBuffer, nBufLen); opadHMAC_SHA1(ctx); ipadHMAC_SHA1(ctx); opadHMAC_SHA1(ctx); return rtl_Digest_E_None; } void SAL_CALL rtl_digest_destroyHMAC_SHA1(rtlDigest Digest) noexcept { DigestHMAC_SHA1_Impl *pImpl = static_cast(Digest); if (pImpl) { if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmHMAC_SHA1) rtl_freeZeroMemory(pImpl, sizeof(DigestHMAC_SHA1_Impl)); else free(pImpl); } } #define DIGEST_CBLOCK_PBKDF2 RTL_DIGEST_LENGTH_HMAC_SHA1 static void updatePBKDF2( rtlDigest hDigest, sal_uInt8 T[DIGEST_CBLOCK_PBKDF2], const sal_uInt8 *pSaltData, sal_uInt32 nSaltLen, sal_uInt32 nCount, sal_uInt32 nIndex) { /* T_i = F (P, S, c, i) */ sal_uInt8 U[DIGEST_CBLOCK_PBKDF2]; sal_uInt32 i, k; /* U_(1) = PRF (P, S || INDEX) */ rtl_digest_updateHMAC_SHA1(hDigest, pSaltData, nSaltLen); rtl_digest_updateHMAC_SHA1(hDigest, &nIndex, sizeof(nIndex)); rtl_digest_getHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2); /* T = U_(1) */ for (k = 0; k < DIGEST_CBLOCK_PBKDF2; k++) { T[k] = U[k]; } /* T ^= U_(2) ^ ... ^ U_(c) */ for (i = 1; i < nCount; i++) { /* U_(i) = PRF (P, U_(i-1)) */ rtl_digest_updateHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2); rtl_digest_getHMAC_SHA1(hDigest, U, DIGEST_CBLOCK_PBKDF2); /* T ^= U_(i) */ for (k = 0; k < DIGEST_CBLOCK_PBKDF2; k++) { T[k] ^= U[k]; } } rtl_secureZeroMemory(U, DIGEST_CBLOCK_PBKDF2); } rtlDigestError SAL_CALL rtl_digest_PBKDF2( sal_uInt8 *pKeyData , sal_uInt32 nKeyLen, const sal_uInt8 *pPassData, sal_uInt32 nPassLen, const sal_uInt8 *pSaltData, sal_uInt32 nSaltLen, sal_uInt32 nCount) noexcept { DigestHMAC_SHA1_Impl digest; sal_uInt32 i = 1; if (!pKeyData || !pPassData || !pSaltData) return rtl_Digest_E_Argument; digest.m_digest = HMAC_SHA1; rtl_digest_initHMAC_SHA1(&digest, pPassData, nPassLen); /* DK = T_(1) || T_(2) || ... || T_(l) */ while (nKeyLen >= DIGEST_CBLOCK_PBKDF2) { /* T_(i) = F (P, S, c, i); DK ||= T_(i) */ updatePBKDF2( &digest, pKeyData, pSaltData, nSaltLen, nCount, OSL_NETDWORD(i)); /* Next 'KeyData' block */ pKeyData += DIGEST_CBLOCK_PBKDF2; nKeyLen -= DIGEST_CBLOCK_PBKDF2; i += 1; } if (nKeyLen > 0) { /* Last 'KeyData' block */ sal_uInt8 T[DIGEST_CBLOCK_PBKDF2]; /* T_i = F (P, S, c, i) */ updatePBKDF2( &digest, T, pSaltData, nSaltLen, nCount, OSL_NETDWORD(i)); /* DK ||= T_(i) */ memcpy(pKeyData, T, nKeyLen); rtl_secureZeroMemory(T, DIGEST_CBLOCK_PBKDF2); } rtl_secureZeroMemory(&digest, sizeof(digest)); return rtl_Digest_E_None; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */