/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include "strtmpl.hxx" #include constexpr int minExp = -323, maxExp = 308; constexpr double n10s[] = { 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312, 1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300, 1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288, 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276, 1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264, 1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252, 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240, 1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228, 1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216, 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204, 1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192, 1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180, 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168, 1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156, 1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144, 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132, 1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120, 1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108, 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96, 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84, 1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72, 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60, 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48, 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36, 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24, 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308, }; static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1); // return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals) static double getN10Exp(int nExp) { if (nExp < minExp || nExp > maxExp) return pow(10.0, static_cast(nExp)); // will return 0 or INF with IEEE 754 return n10s[nExp - minExp]; } namespace { /** If value (passed as absolute value) is an integer representable as double, which we handle explicitly at some places. */ bool isRepresentableInteger(double fAbsValue) { static_assert(std::numeric_limits::is_iec559 && std::numeric_limits::digits == 53); assert(fAbsValue >= 0.0); if (fAbsValue >= 0x1p53) return false; sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue); return nInt == fAbsValue; } // Returns 1-based index of least significant bit in a number, or zero if number is zero int findFirstSetBit(unsigned n) { #if defined _WIN32 unsigned long pos; unsigned char bNonZero = _BitScanForward(&pos, n); return (bNonZero == 0) ? 0 : pos + 1; #else return __builtin_ffs(n); #endif } /** Returns number of binary bits for fractional part of the number Expects a proper non-negative double value, not +-INF, not NAN */ int getBitsInFracPart(double fAbsValue) { assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0); if (fAbsValue == 0.0) return 0; auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue); int nExponent = pValParts->inf_parts.exponent - 1023; if (nExponent >= 52) return 0; // All bits in fraction are in integer part of the number int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo); if (nLeastSignificant == 0) { nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi); if (nLeastSignificant == 0) nLeastSignificant = 53; // the implied leading 1 is the least significant else nLeastSignificant += 32; } int nFracSignificant = 53 - nLeastSignificant; int nBitsInFracPart = nFracSignificant - nExponent; return std::max(nBitsInFracPart, 0); } } void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, char cDecSeparator, sal_Int32 const * pGroups, char cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { rtl::str::doubleToString( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Unicode cDecSeparator, sal_Int32 const * pGroups, sal_Unicode cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { rtl::str::doubleToString( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } namespace { template< typename CharT > double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT cDecSeparator, CharT cGroupSeparator, rtl_math_ConversionStatus * pStatus, CharT const ** pParsedEnd) { double fVal = 0.0; rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok; CharT const * p0 = pBegin; while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t'))) { ++p0; } bool bSign; bool explicitSign = false; if (p0 != pEnd && *p0 == CharT('-')) { bSign = true; explicitSign = true; ++p0; } else { bSign = false; if (p0 != pEnd && *p0 == CharT('+')) { explicitSign = true; ++p0; } } CharT const * p = p0; bool bDone = false; // #i112652# XMLSchema-2 if ((pEnd - p) >= 3) { if (!explicitSign && (CharT('N') == p[0]) && (CharT('a') == p[1]) && (CharT('N') == p[2])) { p += 3; fVal = std::numeric_limits::quiet_NaN(); bDone = true; } else if ((CharT('I') == p[0]) && (CharT('N') == p[1]) && (CharT('F') == p[2])) { p += 3; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; bDone = true; } } if (!bDone) // do not recognize e.g. NaN1.23 { std::unique_ptr bufInHeap; std::unique_ptr bufInHeapMap; constexpr int bufOnStackSize = 256; char bufOnStack[bufOnStackSize]; const CharT* bufOnStackMap[bufOnStackSize]; char* buf = bufOnStack; const CharT** bufmap = bufOnStackMap; int bufpos = 0; const size_t bufsize = pEnd - p + (bSign ? 2 : 1); if (bufsize > bufOnStackSize) { bufInHeap = std::make_unique(bufsize); bufInHeapMap = std::make_unique(bufsize); buf = bufInHeap.get(); bufmap = bufInHeapMap.get(); } if (bSign) { buf[0] = '-'; bufmap[0] = p; // yes, this may be the same pointer as for the next mapping bufpos = 1; } // Put first zero to buffer for strings like "-0" if (p != pEnd && *p == CharT('0')) { buf[bufpos] = '0'; bufmap[bufpos] = p; ++bufpos; ++p; } // Leading zeros and group separators between digits may be safely // ignored. p0 < p implies that there was a leading 0 already, // consecutive group separators may not happen as *(p+1) is checked for // digit. while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator && p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1))))) { ++p; } // integer part of mantissa for (; p != pEnd; ++p) { CharT c = *p; if (rtl::isAsciiDigit(c)) { buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } else if (c != cGroupSeparator) { break; } else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1))) { // A leading or trailing (not followed by a digit) group // separator character is not a group separator. break; } } // fraction part of mantissa if (p != pEnd && *p == cDecSeparator) { buf[bufpos] = '.'; bufmap[bufpos] = p; ++bufpos; ++p; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) { break; } buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } } // Exponent if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e'))) { buf[bufpos] = 'E'; bufmap[bufpos] = p; ++bufpos; ++p; if (p != pEnd && *p == CharT('-')) { buf[bufpos] = '-'; bufmap[bufpos] = p; ++bufpos; ++p; } else if (p != pEnd && *p == CharT('+')) ++p; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) break; buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } } else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#') && p[-1] == cDecSeparator && p[-2] == CharT('1')) { if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N') && p[3] == CharT('F')) { // "1.#INF", "+1.#INF", "-1.#INF" p += 4; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; bDone = true; } else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A') && p[3] == CharT('N')) { // "1.#NAN", "+1.#NAN", "-1.#NAN" p += 4; fVal = std::copysign(std::numeric_limits::quiet_NaN(), bSign ? -1.0 : 1.0); bSign = false; // don't negate again // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) { ++p; } bDone = true; } } if (!bDone) { buf[bufpos] = '\0'; bufmap[bufpos] = p; char* pCharParseEnd; errno = 0; fVal = strtod_nolocale(buf, &pCharParseEnd); if (errno == ERANGE) { // Check for the dreaded rounded to 15 digits max value // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote // everywhere, accept with or without plus sign in exponent. const char* b = buf; if (b[0] == '-') ++b; if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20)) && !strncmp( b, "1.79769313486232", 16) && (b[16] == 'e' || b[16] == 'E') && (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4)) || ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3)))) { fVal = (buf < b) ? -DBL_MAX : DBL_MAX; } else { eStatus = rtl_math_ConversionStatus_OutOfRange; } } p = bufmap[pCharParseEnd - buf]; bSign = false; } } // overflow also if more than DBL_MAX_10_EXP digits without decimal // separator, or 0. and more than DBL_MIN_10_EXP digits, ... bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way... if (bHuge) eStatus = rtl_math_ConversionStatus_OutOfRange; if (bSign) fVal = -fVal; if (pStatus) *pStatus = eStatus; if (pParsedEnd) *pParsedEnd = p == p0 ? pBegin : p; return fVal; } } double SAL_CALL rtl_math_stringToDouble(char const * pBegin, char const * pEnd, char cDecSeparator, char cGroupSeparator, rtl_math_ConversionStatus * pStatus, char const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble( reinterpret_cast(pBegin), reinterpret_cast(pEnd), static_cast(cDecSeparator), static_cast(cGroupSeparator), pStatus, reinterpret_cast(pParsedEnd)); } double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin, sal_Unicode const * pEnd, sal_Unicode cDecSeparator, sal_Unicode cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Unicode const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd); } double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, enum rtl_math_RoundingMode eMode) SAL_THROW_EXTERN_C() { if (!std::isfinite(fValue)) return fValue; if (fValue == 0.0) return fValue; if (nDecPlaces == 0) { switch (eMode) { case rtl_math_RoundingMode_Corrected: return std::round(fValue); case rtl_math_RoundingMode_HalfEven: if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0) { fValue = std::nearbyint(fValue); std::fesetround(oldMode); return fValue; } break; default: break; } } const double fOrigValue = fValue; // sign adjustment bool bSign = std::signbit( fValue ); if (bSign) fValue = -fValue; // Rounding to decimals between integer distance precision (gaps) does not // make sense, do not even try to multiply/divide and introduce inaccuracy. // For same reasons, do not attempt to round integers to decimals. if (nDecPlaces >= 0 && (fValue >= 0x1p52 || isRepresentableInteger(fValue))) return fOrigValue; double fFac = 0; if (nDecPlaces != 0) { if (nDecPlaces > 0) { // Determine how many decimals are representable in the precision. // Anything greater 2^52 and 0.0 was already ruled out above. // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ... const sal_math_Double* pd = reinterpret_cast(&fValue); const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023); if (nDec <= 0) { assert(!"Shouldn't this had been caught already as large number?"); return fOrigValue; } if (nDec < nDecPlaces) nDecPlaces = nDec; } // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional // factors that later when dividing back spoil things. For negative // decimals divide first with the inverse, then multiply the rounded // value back. fFac = getN10Exp(abs(nDecPlaces)); if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac))) // Underflow, rounding to that many integer positions would be 0. return 0.0; if (!std::isfinite(fFac)) // Overflow with very small values and high number of decimals. return fOrigValue; if (nDecPlaces < 0) fValue /= fFac; else fValue *= fFac; if (!std::isfinite(fValue)) return fOrigValue; } // Round only if not already in distance precision gaps of integers, where // for [2^52,2^53) adding 0.5 would even yield the next representable // integer. if (fValue < 0x1p52) { switch ( eMode ) { case rtl_math_RoundingMode_Corrected : fValue = rtl::math::approxFloor(fValue + 0.5); break; case rtl_math_RoundingMode_Down: fValue = rtl::math::approxFloor(fValue); break; case rtl_math_RoundingMode_Up: fValue = rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_Floor: fValue = bSign ? rtl::math::approxCeil(fValue) : rtl::math::approxFloor( fValue ); break; case rtl_math_RoundingMode_Ceiling: fValue = bSign ? rtl::math::approxFloor(fValue) : rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_HalfDown : { double f = floor(fValue); fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfUp: { double f = floor(fValue); fValue = ((fValue - f) < 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfEven: #if defined FLT_ROUNDS /* Use fast version. FLT_ROUNDS may be defined to a function by some compilers! DBL_EPSILON is the smallest fractional number which can be represented, its reciprocal is therefore the smallest number that cannot have a fractional part. Once you add this reciprocal to `x', its fractional part is stripped off. Simply subtracting the reciprocal back out returns `x' without its fractional component. Simple, clever, and elegant - thanks to Ross Cottrell, the original author, who placed it into public domain. volatile: prevent compiler from being too smart */ if (FLT_ROUNDS == 1) { volatile double x = fValue + 1.0 / DBL_EPSILON; fValue = x - 1.0 / DBL_EPSILON; } else #endif // FLT_ROUNDS { double f = floor(fValue); if ((fValue - f) != 0.5) { fValue = floor( fValue + 0.5 ); } else { double g = f / 2.0; fValue = (g == floor( g )) ? f : (f + 1.0); } } break; default: OSL_ASSERT(false); break; } } if (nDecPlaces != 0) { if (nDecPlaces < 0) fValue *= fFac; else fValue /= fFac; } if (!std::isfinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; } double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C() { return fValue * getN10Exp(nExp); } double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C() { const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt) { // We don't handle these conditions. Bail out. return fValue; } double fOrigValue = fValue; bool bSign = std::signbit(fValue); if (bSign) fValue = -fValue; // If the value is either integer representable as double, // or only has small number of bits in fraction part, then we need not do any approximation if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11) return fOrigValue; int nExp = static_cast< int >(floor(log10(fValue))); nExp = 14 - nExp; double fExpValue = getN10Exp(abs(nExp)); if (nExp < 0) fValue /= fExpValue; else fValue *= fExpValue; // If the original value was near DBL_MIN we got an overflow. Restore and // bail out. if (!std::isfinite(fValue)) return fOrigValue; fValue = std::round(fValue); if (nExp < 0) fValue *= fExpValue; else fValue /= fExpValue; // If the original value was near DBL_MAX we got an overflow. Restore and // bail out. if (!std::isfinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; } bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C() { static const double e48 = 0x1p-48; if (a == b) return true; if (a == 0.0 || b == 0.0 || std::signbit(a) != std::signbit(b)) return false; const double d = fabs(a - b); if (!std::isfinite(d)) return false; // Nan or Inf involved a = fabs(a); if (d >= (a * e48)) return false; b = fabs(b); if (d >= (b * e48)) return false; if (isRepresentableInteger(a) && isRepresentableInteger(b)) return false; // special case for representable integers. return true; } double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C() { return expm1(fValue); } double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C() { #ifdef __APPLE__ if (fValue == -0.0) return fValue; // macOS 10.8 libc returns 0.0 for -0.0 #endif return log1p(fValue); } double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C() { return ::atanh(fValue); } /** Parent error function (erf) */ double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C() { return erf(x); } /** Parent complementary error function (erfc) */ double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C() { return erfc(x); } /** improved accuracy of asinh for |x| large and for x near zero @see #i97605# */ double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C() { if ( fX == 0.0 ) return 0.0; double fSign = 1.0; if ( fX < 0.0 ) { fX = - fX; fSign = -1.0; } if ( fX < 0.125 ) return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX))); if ( fX < 1.25e7 ) return fSign * log( fX + sqrt( 1.0 + fX*fX)); return fSign * log( 2.0*fX); } /** improved accuracy of acosh for x large and for x near 1 @see #i97605# */ double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C() { volatile double fZ = fX - 1.0; if (fX < 1.0) return std::numeric_limits::quiet_NaN(); if ( fX == 1.0 ) return 0.0; if ( fX < 1.1 ) return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ)); if ( fX < 1.25e7 ) return log( fX + sqrt( fX*fX - 1.0)); return log( 2.0*fX); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */