/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include constexpr int n10Count = 16; constexpr double n10s[n10Count*2+1] = { 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 , }; // return pow(10.0,nExp) optimized for exponents in the interval [-16,16] static double getN10Exp(int nExp) { if (nExp < -n10Count || nExp > n10Count) return pow(10.0, static_cast(nExp)); return n10s[nExp + n10Count]; } namespace { double const nCorrVal[] = { 0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8, 9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15 }; struct StringTraits { typedef char Char; typedef rtl_String String; static void createString(rtl_String ** pString, char const * pChars, sal_Int32 nLen) { rtl_string_newFromStr_WithLength(pString, pChars, nLen); } static void createBuffer(rtl_String ** pBuffer, const sal_Int32 * pCapacity) { rtl_string_new_WithLength(pBuffer, *pCapacity); } static void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, char const * pChars, sal_Int32 nLen) { assert(pChars); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, char const * pStr, sal_Int32 nLen) { assert(pStr); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; struct UStringTraits { typedef sal_Unicode Char; typedef rtl_uString String; static void createString(rtl_uString ** pString, sal_Unicode const * pChars, sal_Int32 nLen) { rtl_uString_newFromStr_WithLength(pString, pChars, nLen); } static void createBuffer(rtl_uString ** pBuffer, const sal_Int32 * pCapacity) { rtl_uString_new_WithLength(pBuffer, *pCapacity); } static void appendChars(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Unicode const * pChars, sal_Int32 nLen) { assert(pChars); rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static void appendAscii(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, char const * pStr, sal_Int32 nLen) { rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; /** If value (passed as absolute value) is an integer representable as double, which we handle explicitly at some places. */ bool isRepresentableInteger(double fAbsValue) { assert(fAbsValue >= 0.0); const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; if (fAbsValue <= static_cast< double >(kMaxInt)) { sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue); // Check the integer range again because double comparison may yield // true within the precision range. // XXX loplugin:fpcomparison complains about floating-point comparison // for static_cast(nInt) == fAbsValue, though we actually want // this here. if (nInt > kMaxInt) return false; double fInt = static_cast< double >(nInt); return !(fInt < fAbsValue) && !(fInt > fAbsValue); } return false; } // Returns 1-based index of least significant bit in a number, or zero if number is zero int findFirstSetBit(unsigned n) { #if defined _WIN32 unsigned long pos; unsigned char bNonZero = _BitScanForward(&pos, n); return (bNonZero == 0) ? 0 : pos + 1; #else return __builtin_ffs(n); #endif } /** Returns number of binary bits for fractional part of the number Expects a proper non-negative double value, not +-INF, not NAN */ int getBitsInFracPart(double fAbsValue) { assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0); if (fAbsValue == 0.0) return 0; auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue); int nExponent = pValParts->inf_parts.exponent - 1023; if (nExponent >= 52) return 0; // All bits in fraction are in integer part of the number int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo); if (nLeastSignificant == 0) { nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi); if (nLeastSignificant == 0) nLeastSignificant = 53; // the implied leading 1 is the least significant else nLeastSignificant += 32; } int nFracSignificant = 53 - nLeastSignificant; int nBitsInFracPart = nFracSignificant - nExponent; return std::max(nBitsInFracPart, 0); } template< typename T > void doubleToString(typename T::String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, typename T::Char cDecSeparator, sal_Int32 const * pGroups, typename T::Char cGroupSeparator, bool bEraseTrailingDecZeros) { static double const nRoundVal[] = { 5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6, 0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14 }; // sign adjustment, instead of testing for fValue<0.0 this will also fetch // -0.0 bool bSign = std::signbit(fValue); if (bSign) fValue = -fValue; if (std::isnan(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN"); if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("NaN")); return; } bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way... if (bHuge || std::isinf(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF"); if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } if ( bSign ) T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("-")); T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("INF")); return; } // Unfortunately the old rounding below writes 1.79769313486232e+308 for // DBL_MAX and 4 subsequent nextafter(...,0). static const double fB1 = std::nextafter( DBL_MAX, 0); static const double fB2 = std::nextafter( fB1, 0); static const double fB3 = std::nextafter( fB2, 0); static const double fB4 = std::nextafter( fB3, 0); if ((fValue >= fB4) && eFormat != rtl_math_StringFormat_F) { // 1.7976931348623157e+308 instead of rounded 1.79769313486232e+308 // that can't be converted back as out of range. For rounded values if // they exceed range they should not be written to exchange strings or // file formats. // Writing pDig up to decimals(-1,-2) then appending one digit from // pRou xor one or two digits from pSlot[]. constexpr char pDig[] = "7976931348623157"; constexpr char pRou[] = "8087931359623267"; // the only up-carry is 80 static_assert(SAL_N_ELEMENTS(pDig) == SAL_N_ELEMENTS(pRou), "digit count mismatch"); constexpr sal_Int32 nDig2 = RTL_CONSTASCII_LENGTH(pRou) - 2; sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH(pRou) + 8; // + "-1.E+308" const char pSlot[5][2][3] = { // rounded, not "67", "57", // DBL_MAX "65", "55", "53", "53", "51", "51", "59", "49", }; if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } if (bSign) T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("-")); nDecPlaces = std::clamp( nDecPlaces, 0, RTL_CONSTASCII_LENGTH(pRou)); if (nDecPlaces == 0) { T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("2")); } else { T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("1")); T::appendChars(pResult, pResultCapacity, &nResultOffset, &cDecSeparator, 1); if (nDecPlaces <= 2) { T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou, nDecPlaces); } else if (nDecPlaces <= nDig2) { T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces - 1); T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou + nDecPlaces - 1, 1); } else { const sal_Int32 nDec = nDecPlaces - nDig2; nDecPlaces -= nDec; // nDec-1 is also offset into slot, rounded(1-1=0) or not(2-1=1) const size_t nSlot = ((fValue < fB3) ? 4 : ((fValue < fB2) ? 3 : ((fValue < fB1) ? 2 : ((fValue < DBL_MAX) ? 1 : 0)))); T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces); T::appendAscii(pResult, pResultCapacity, &nResultOffset, pSlot[nSlot][nDec-1], nDec); } } T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("E+308")); return; } // Use integer representation for integer values that fit into the // mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy. const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; if ((eFormat == rtl_math_StringFormat_Automatic || eFormat == rtl_math_StringFormat_F) && fValue <= static_cast< double >(kMaxInt)) { sal_Int64 nInt = static_cast< sal_Int64 >(fValue); // Check the integer range again because double comparison may yield // true within the precision range. if (nInt <= kMaxInt && static_cast< double >(nInt) == fValue) { if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = 0; else nDecPlaces = ::std::clamp< sal_Int32 >(nDecPlaces, -15, 15); if (bEraseTrailingDecZeros && nDecPlaces > 0) nDecPlaces = 0; // Round before decimal position. if (nDecPlaces < 0) { sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1)); sal_Int64 nTemp = nInt / nRounding; int nDigit = nTemp % 10; nTemp /= 10; if (nDigit >= 5) ++nTemp; nTemp *= 10; nTemp *= nRounding; nInt = nTemp; nDecPlaces = 0; } // Max 1 sign, 16 integer digits, 15 group separators, 1 decimal // separator, 15 decimals digits. typename T::Char aBuf[64]; typename T::Char * pBuf = aBuf; typename T::Char * p = pBuf; // Backward fill. size_t nGrouping = 0; sal_Int32 nGroupDigits = 0; do { typename T::Char nDigit = nInt % 10; nInt /= 10; *p++ = nDigit + '0'; if (pGroups && pGroups[nGrouping] == ++nGroupDigits && nInt > 0 && cGroupSeparator) { *p++ = cGroupSeparator; if (pGroups[nGrouping+1]) ++nGrouping; nGroupDigits = 0; } } while (nInt > 0); if (bSign) *p++ = '-'; // Reverse buffer content. sal_Int32 n = (p - pBuf) / 2; for (sal_Int32 i=0; i < n; ++i) { ::std::swap( pBuf[i], p[-i-1]); } // Append decimals. if (nDecPlaces > 0) { *p++ = cDecSeparator; while (nDecPlaces--) *p++ = '0'; } if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); return; } } // find the exponent int nExp = 0; if ( fValue > 0.0 ) { // Cap nExp at a small value beyond which "fValue /= N10Exp" would lose precision (or N10Exp // might even be zero); that will produce output with the decimal point in a non-normalized // position, but the current quality of output for such small values is probably abysmal, // anyway: nExp = std::max( static_cast< int >(floor(log10(fValue))), std::numeric_limits::min_exponent10); double const N10Exp = getN10Exp(nExp); assert(N10Exp != 0); fValue /= N10Exp; } switch (eFormat) { case rtl_math_StringFormat_Automatic: { // E or F depending on exponent magnitude int nPrec; if (nExp <= -15 || nExp >= 15) // was <-16, >16 in ancient versions, which leads to inaccuracies { nPrec = 14; eFormat = rtl_math_StringFormat_E; } else { if (nExp < 14) { nPrec = 15 - nExp - 1; eFormat = rtl_math_StringFormat_F; } else { nPrec = 15; eFormat = rtl_math_StringFormat_F; } } if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = nPrec; } break; case rtl_math_StringFormat_G : case rtl_math_StringFormat_G1 : case rtl_math_StringFormat_G2 : { // G-Point, similar to sprintf %G if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance) nDecPlaces = 6; if (nExp < -4 || nExp >= nDecPlaces) { nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1); if (eFormat == rtl_math_StringFormat_G) eFormat = rtl_math_StringFormat_E; else if (eFormat == rtl_math_StringFormat_G2) eFormat = rtl_math_StringFormat_E2; else if (eFormat == rtl_math_StringFormat_G1) eFormat = rtl_math_StringFormat_E1; } else { nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1); eFormat = rtl_math_StringFormat_F; } } break; default: break; } // Too large values for nDecPlaces make no sense; it might also be // rtl_math_DecimalPlaces_Max was passed with rtl_math_StringFormat_F or // others, but we don't want to allocate/deallocate 2GB just to fill it // with trailing '0' characters.. nDecPlaces = std::clamp(nDecPlaces, -20, 20); sal_Int32 nDigits = nDecPlaces + 1; if (eFormat == rtl_math_StringFormat_F) nDigits += nExp; // Round the number if(nDigits >= 0) { fValue += nRoundVal[std::min(nDigits, 15)]; if (fValue >= 10) { fValue = 1.0; nExp++; if (eFormat == rtl_math_StringFormat_F) nDigits++; } } static sal_Int32 const nBufMax = 256; typename T::Char aBuf[nBufMax]; typename T::Char * pBuf; sal_Int32 nBuf = static_cast< sal_Int32 > (nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp)) : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0); if (nBuf > nBufMax) { pBuf = static_cast< typename T::Char * >( malloc(nBuf * sizeof (typename T::Char))); OSL_ENSURE(pBuf, "Out of memory"); } else { pBuf = aBuf; } typename T::Char * p = pBuf; if ( bSign ) *p++ = static_cast< typename T::Char >('-'); bool bHasDec = false; int nDecPos; // Check for F format and number < 1 if(eFormat == rtl_math_StringFormat_F) { if(nExp < 0) { *p++ = static_cast< typename T::Char >('0'); if (nDecPlaces > 0) { *p++ = cDecSeparator; bHasDec = true; } sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1); while((i--) > 0) { *p++ = static_cast< typename T::Char >('0'); } nDecPos = 0; } else { nDecPos = nExp + 1; } } else { nDecPos = 1; } int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0; if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator) { while (nGrouping + pGroups[nGroupSelector] < nDecPos) { nGrouping += pGroups[nGroupSelector]; if (pGroups[nGroupSelector+1]) { if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos) break; // while ++nGroupSelector; } else if (!nGroupExceed) { nGroupExceed = nGrouping; } } } // print the number if (nDigits > 0) { for (int i = 0; ; i++) { if (i < 15) // was 16 in ancient versions, which leads to inaccuracies { int nDigit; if (nDigits-1 == 0 && i > 0 && i < 14) nDigit = static_cast< int >(floor( fValue + nCorrVal[15-i])); else nDigit = static_cast< int >(fValue + 1E-15); if (nDigit >= 10) { // after-treatment of up-rounding to the next decade sal_Int32 sLen = static_cast< long >(p-pBuf)-1; if (sLen == -1 || (sLen == 0 && bSign)) { // Assert that no one changed the logic we rely on. assert(!bSign || *pBuf == static_cast< typename T::Char >('-')); p = pBuf; if (bSign) ++p; if (eFormat == rtl_math_StringFormat_F) { *p++ = static_cast< typename T::Char >('1'); *p++ = static_cast< typename T::Char >('0'); } else { *p++ = static_cast< typename T::Char >('1'); *p++ = cDecSeparator; *p++ = static_cast< typename T::Char >('0'); nExp++; bHasDec = true; } } else { for (sal_Int32 j = sLen; j >= 0; j--) { typename T::Char cS = pBuf[j]; if (j == 0 && bSign) { // Do not touch leading minus sign put earlier. assert(cS == static_cast< typename T::Char >('-')); break; // for, this is the last character backwards. } if (cS != cDecSeparator) { if (cS != static_cast< typename T::Char >('9')) { pBuf[j] = ++cS; j = -1; // break loop } else { pBuf[j] = static_cast< typename T::Char >('0'); if (j == 0 || (j == 1 && bSign)) { if (eFormat == rtl_math_StringFormat_F) { // insert '1' typename T::Char * px = p++; while (pBuf < px) { *px = *(px-1); px--; } pBuf[0] = static_cast< typename T::Char >('1'); } else { pBuf[j] = static_cast< typename T::Char >('1'); nExp++; } } } } } *p++ = static_cast< typename T::Char >('0'); } fValue = 0.0; } else { *p++ = static_cast< typename T::Char >( nDigit + static_cast< typename T::Char >('0') ); fValue = (fValue - nDigit) * 10.0; } } else { *p++ = static_cast< typename T::Char >('0'); } if (!--nDigits) break; // for if (nDecPos) { if(!--nDecPos) { *p++ = cDecSeparator; bHasDec = true; } else if (nDecPos == nGrouping) { *p++ = cGroupSeparator; nGrouping -= pGroups[nGroupSelector]; if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } } } } if (!bHasDec && eFormat == rtl_math_StringFormat_F) { // nDecPlaces < 0 did round the value while (--nDecPos > 0) { // fill before decimal point if (nDecPos == nGrouping) { *p++ = cGroupSeparator; nGrouping -= pGroups[nGroupSelector]; if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } *p++ = static_cast< typename T::Char >('0'); } } if (bEraseTrailingDecZeros && bHasDec && p > pBuf) { while (*(p-1) == static_cast< typename T::Char >('0')) { p--; } if (*(p-1) == cDecSeparator) p--; } // Print the exponent ('E', followed by '+' or '-', followed by exactly // three digits for rtl_math_StringFormat_E). The code in // rtl_[u]str_valueOf{Float|Double} relies on this format. if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1) { if (p == pBuf) *p++ = static_cast< typename T::Char >('1'); // maybe no nDigits if nDecPlaces < 0 *p++ = static_cast< typename T::Char >('E'); if(nExp < 0) { nExp = -nExp; *p++ = static_cast< typename T::Char >('-'); } else { *p++ = static_cast< typename T::Char >('+'); } if (eFormat == rtl_math_StringFormat_E || nExp >= 100) *p++ = static_cast< typename T::Char >( nExp / 100 + static_cast< typename T::Char >('0') ); nExp %= 100; if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10) *p++ = static_cast< typename T::Char >( nExp / 10 + static_cast< typename T::Char >('0') ); *p++ = static_cast< typename T::Char >( nExp % 10 + static_cast< typename T::Char >('0') ); } if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); if (pBuf != &aBuf[0]) free(pBuf); } } void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, char cDecSeparator, sal_Int32 const * pGroups, char cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< StringTraits >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Unicode cDecSeparator, sal_Int32 const * pGroups, sal_Unicode cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< UStringTraits >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } namespace { template< typename CharT > double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT cDecSeparator, CharT cGroupSeparator, rtl_math_ConversionStatus * pStatus, CharT const ** pParsedEnd) { double fVal = 0.0; rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok; CharT const * p0 = pBegin; while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t'))) { ++p0; } bool bSign; if (p0 != pEnd && *p0 == CharT('-')) { bSign = true; ++p0; } else { bSign = false; if (p0 != pEnd && *p0 == CharT('+')) ++p0; } CharT const * p = p0; bool bDone = false; // #i112652# XMLSchema-2 if ((pEnd - p) >= 3) { if ((CharT('N') == p[0]) && (CharT('a') == p[1]) && (CharT('N') == p[2])) { p += 3; rtl::math::setNan( &fVal ); bDone = true; } else if ((CharT('I') == p[0]) && (CharT('N') == p[1]) && (CharT('F') == p[2])) { p += 3; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; bDone = true; } } if (!bDone) // do not recognize e.g. NaN1.23 { std::unique_ptr bufInHeap; std::unique_ptr bufInHeapMap; constexpr int bufOnStackSize = 256; char bufOnStack[bufOnStackSize]; const CharT* bufOnStackMap[bufOnStackSize]; char* buf = bufOnStack; const CharT** bufmap = bufOnStackMap; int bufpos = 0; const size_t bufsize = pEnd - p + (bSign ? 2 : 1); if (bufsize > bufOnStackSize) { bufInHeap = std::make_unique(bufsize); bufInHeapMap = std::make_unique(bufsize); buf = bufInHeap.get(); bufmap = bufInHeapMap.get(); } if (bSign) { buf[0] = '-'; bufmap[0] = p; // yes, this may be the same pointer as for the next mapping bufpos = 1; } // Put first zero to buffer for strings like "-0" if (p != pEnd && *p == CharT('0')) { buf[bufpos] = '0'; bufmap[bufpos] = p; ++bufpos; ++p; } // Leading zeros and group separators between digits may be safely // ignored. p0 < p implies that there was a leading 0 already, // consecutive group separators may not happen as *(p+1) is checked for // digit. while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator && p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1))))) { ++p; } // integer part of mantissa for (; p != pEnd; ++p) { CharT c = *p; if (rtl::isAsciiDigit(c)) { buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } else if (c != cGroupSeparator) { break; } else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1))) { // A leading or trailing (not followed by a digit) group // separator character is not a group separator. break; } } // fraction part of mantissa if (p != pEnd && *p == cDecSeparator) { buf[bufpos] = '.'; bufmap[bufpos] = p; ++bufpos; ++p; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) { break; } buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } } // Exponent if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e'))) { buf[bufpos] = 'E'; bufmap[bufpos] = p; ++bufpos; ++p; if (p != pEnd && *p == CharT('-')) { buf[bufpos] = '-'; bufmap[bufpos] = p; ++bufpos; ++p; } else if (p != pEnd && *p == CharT('+')) ++p; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) break; buf[bufpos] = static_cast(c); bufmap[bufpos] = p; ++bufpos; } } else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#') && p[-1] == cDecSeparator && p[-2] == CharT('1')) { if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N') && p[3] == CharT('F')) { // "1.#INF", "+1.#INF", "-1.#INF" p += 4; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; bDone = true; } else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A') && p[3] == CharT('N')) { // "1.#NAN", "+1.#NAN", "-1.#NAN" p += 4; rtl::math::setNan( &fVal ); if (bSign) { union { double sd; sal_math_Double md; } m; m.sd = fVal; m.md.w32_parts.msw |= 0x80000000; // create negative NaN fVal = m.sd; bSign = false; // don't negate again } // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) { ++p; } bDone = true; } } if (!bDone) { buf[bufpos] = '\0'; bufmap[bufpos] = p; char* pCharParseEnd; errno = 0; fVal = strtod_nolocale(buf, &pCharParseEnd); if (errno == ERANGE) { // Check for the dreaded rounded to 15 digits max value // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote // everywhere, accept with or without plus sign in exponent. const char* b = buf; if (b[0] == '-') ++b; if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20)) && !strncmp( b, "1.79769313486232", 16) && (b[16] == 'e' || b[16] == 'E') && (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4)) || ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3)))) { fVal = (buf < b) ? -DBL_MAX : DBL_MAX; } else { eStatus = rtl_math_ConversionStatus_OutOfRange; } } p = bufmap[pCharParseEnd - buf]; bSign = false; } } // overflow also if more than DBL_MAX_10_EXP digits without decimal // separator, or 0. and more than DBL_MIN_10_EXP digits, ... bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way... if (bHuge) eStatus = rtl_math_ConversionStatus_OutOfRange; if (bSign) fVal = -fVal; if (pStatus) *pStatus = eStatus; if (pParsedEnd) *pParsedEnd = p == p0 ? pBegin : p; return fVal; } } double SAL_CALL rtl_math_stringToDouble(char const * pBegin, char const * pEnd, char cDecSeparator, char cGroupSeparator, rtl_math_ConversionStatus * pStatus, char const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble( reinterpret_cast(pBegin), reinterpret_cast(pEnd), static_cast(cDecSeparator), static_cast(cGroupSeparator), pStatus, reinterpret_cast(pParsedEnd)); } double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin, sal_Unicode const * pEnd, sal_Unicode cDecSeparator, sal_Unicode cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Unicode const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd); } double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, enum rtl_math_RoundingMode eMode) SAL_THROW_EXTERN_C() { if (!std::isfinite(fValue)) return fValue; if (fValue == 0.0) return fValue; if (nDecPlaces == 0) { switch (eMode) { case rtl_math_RoundingMode_Corrected: return std::round(fValue); case rtl_math_RoundingMode_HalfEven: if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0) { fValue = std::nearbyint(fValue); std::fesetround(oldMode); return fValue; } break; default: break; } } const double fOrigValue = fValue; // sign adjustment bool bSign = std::signbit( fValue ); if (bSign) fValue = -fValue; // Rounding to decimals between integer distance precision (gaps) does not // make sense, do not even try to multiply/divide and introduce inaccuracy. // For same reasons, do not attempt to round integers to decimals. if (nDecPlaces >= 0 && (fValue >= (static_cast(1) << 52) || isRepresentableInteger(fValue))) return fOrigValue; double fFac = 0; if (nDecPlaces != 0) { if (nDecPlaces > 0) { // Determine how many decimals are representable in the precision. // Anything greater 2^52 and 0.0 was already ruled out above. // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ... const sal_math_Double* pd = reinterpret_cast(&fValue); const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023); if (nDec <= 0) { assert(!"Shouldn't this had been caught already as large number?"); return fOrigValue; } if (nDec < nDecPlaces) nDecPlaces = nDec; } // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional // factors that later when dividing back spoil things. For negative // decimals divide first with the inverse, then multiply the rounded // value back. fFac = getN10Exp(abs(nDecPlaces)); if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac))) // Underflow, rounding to that many integer positions would be 0. return 0.0; if (!std::isfinite(fFac)) // Overflow with very small values and high number of decimals. return fOrigValue; if (nDecPlaces < 0) fValue /= fFac; else fValue *= fFac; if (!std::isfinite(fValue)) return fOrigValue; } // Round only if not already in distance precision gaps of integers, where // for [2^52,2^53) adding 0.5 would even yield the next representable // integer. if (fValue < (static_cast(1) << 52)) { switch ( eMode ) { case rtl_math_RoundingMode_Corrected : fValue = rtl::math::approxFloor(fValue + 0.5); break; case rtl_math_RoundingMode_Down: fValue = rtl::math::approxFloor(fValue); break; case rtl_math_RoundingMode_Up: fValue = rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_Floor: fValue = bSign ? rtl::math::approxCeil(fValue) : rtl::math::approxFloor( fValue ); break; case rtl_math_RoundingMode_Ceiling: fValue = bSign ? rtl::math::approxFloor(fValue) : rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_HalfDown : { double f = floor(fValue); fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfUp: { double f = floor(fValue); fValue = ((fValue - f) < 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfEven: #if defined FLT_ROUNDS /* Use fast version. FLT_ROUNDS may be defined to a function by some compilers! DBL_EPSILON is the smallest fractional number which can be represented, its reciprocal is therefore the smallest number that cannot have a fractional part. Once you add this reciprocal to `x', its fractional part is stripped off. Simply subtracting the reciprocal back out returns `x' without its fractional component. Simple, clever, and elegant - thanks to Ross Cottrell, the original author, who placed it into public domain. volatile: prevent compiler from being too smart */ if (FLT_ROUNDS == 1) { volatile double x = fValue + 1.0 / DBL_EPSILON; fValue = x - 1.0 / DBL_EPSILON; } else #endif // FLT_ROUNDS { double f = floor(fValue); if ((fValue - f) != 0.5) { fValue = floor( fValue + 0.5 ); } else { double g = f / 2.0; fValue = (g == floor( g )) ? f : (f + 1.0); } } break; default: OSL_ASSERT(false); break; } } if (nDecPlaces != 0) { if (nDecPlaces < 0) fValue *= fFac; else fValue /= fFac; } if (!std::isfinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; } double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C() { return fValue * getN10Exp(nExp); } double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C() { const double fBigInt = 2199023255552.0; // 2^41 -> only 11 bits left for fractional part, fine as decimal if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt) { // We don't handle these conditions. Bail out. return fValue; } double fOrigValue = fValue; bool bSign = std::signbit(fValue); if (bSign) fValue = -fValue; // If the value is either integer representable as double, // or only has small number of bits in fraction part, then we need not do any approximation if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11) return fOrigValue; int nExp = static_cast< int >(floor(log10(fValue))); nExp = 14 - nExp; double fExpValue = getN10Exp(abs(nExp)); if (nExp < 0) fValue /= fExpValue; else fValue *= fExpValue; // If the original value was near DBL_MIN we got an overflow. Restore and // bail out. if (!std::isfinite(fValue)) return fOrigValue; fValue = std::round(fValue); if (nExp < 0) fValue *= fExpValue; else fValue /= fExpValue; // If the original value was near DBL_MAX we got an overflow. Restore and // bail out. if (!std::isfinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; } bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C() { static const double e48 = 1.0 / (16777216.0 * 16777216.0); static const double e44 = e48 * 16.0; if (a == b) return true; if (a == 0.0 || b == 0.0) return false; const double d = fabs(a - b); if (!std::isfinite(d)) return false; // Nan or Inf involved a = fabs(a); if (d > (a * e44)) return false; b = fabs(b); if (d > (b * e44)) return false; if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b)) return false; // special case for representable integers. return (d < a * e48 && d < b * e48); } double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C() { return expm1(fValue); } double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C() { #ifdef __APPLE__ if (fValue == -0.0) return fValue; // macOS 10.8 libc returns 0.0 for -0.0 #endif return log1p(fValue); } double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C() #if defined __clang__ __attribute__((no_sanitize("float-divide-by-zero"))) // atahn(1) -> inf #endif { return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue)); } /** Parent error function (erf) */ double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C() { return erf(x); } /** Parent complementary error function (erfc) */ double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C() { return erfc(x); } /** improved accuracy of asinh for |x| large and for x near zero @see #i97605# */ double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C() { if ( fX == 0.0 ) return 0.0; double fSign = 1.0; if ( fX < 0.0 ) { fX = - fX; fSign = -1.0; } if ( fX < 0.125 ) return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX))); if ( fX < 1.25e7 ) return fSign * log( fX + sqrt( 1.0 + fX*fX)); return fSign * log( 2.0*fX); } /** improved accuracy of acosh for x large and for x near 1 @see #i97605# */ double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C() { volatile double fZ = fX - 1.0; if (fX < 1.0) { double fResult; ::rtl::math::setNan( &fResult ); return fResult; } if ( fX == 1.0 ) return 0.0; if ( fX < 1.1 ) return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ)); if ( fX < 1.25e7 ) return log( fX + sqrt( fX*fX - 1.0)); return log( 2.0*fX); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */