/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !HAVE_GCC_BUILTIN_FFS && !defined _WIN32 #include #endif static int const n10Count = 16; static double const n10s[2][n10Count] = { { 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 }, { 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 } }; // return pow(10.0,nExp) optimized for exponents in the interval [-16,16] static double getN10Exp(int nExp) { if (nExp < 0) { // && -nExp > 0 necessary for std::numeric_limits::min() // because -nExp = nExp if (-nExp <= n10Count && -nExp > 0) return n10s[1][-nExp-1]; return pow(10.0, static_cast(nExp)); } if (nExp > 0) { if (nExp <= n10Count) return n10s[0][nExp-1]; return pow(10.0, static_cast(nExp)); } return 1.0; } namespace { double const nCorrVal[] = { 0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8, 9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15 }; struct StringTraits { typedef sal_Char Char; typedef rtl_String String; static void createString(rtl_String ** pString, sal_Char const * pChars, sal_Int32 nLen) { rtl_string_newFromStr_WithLength(pString, pChars, nLen); } static void createBuffer(rtl_String ** pBuffer, const sal_Int32 * pCapacity) { rtl_string_new_WithLength(pBuffer, *pCapacity); } static void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pChars, sal_Int32 nLen) { assert(pChars); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pStr, sal_Int32 nLen) { assert(pStr); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; struct UStringTraits { typedef sal_Unicode Char; typedef rtl_uString String; static void createString(rtl_uString ** pString, sal_Unicode const * pChars, sal_Int32 nLen) { rtl_uString_newFromStr_WithLength(pString, pChars, nLen); } static void createBuffer(rtl_uString ** pBuffer, const sal_Int32 * pCapacity) { rtl_uString_new_WithLength(pBuffer, *pCapacity); } static void appendChars(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Unicode const * pChars, sal_Int32 nLen) { assert(pChars); rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static void appendAscii(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pStr, sal_Int32 nLen) { rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; /** If value (passed as absolute value) is an integer representable as double, which we handle explicitly at some places. */ bool isRepresentableInteger(double fAbsValue) { assert(fAbsValue >= 0.0); const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; if (fAbsValue <= static_cast< double >(kMaxInt)) { sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue); // Check the integer range again because double comparison may yield // true within the precision range. // XXX loplugin:fpcomparison complains about floating-point comparison // for static_cast(nInt) == fAbsValue, though we actually want // this here. double fInt; return (nInt <= kMaxInt && (!((fInt = static_cast< double >(nInt)) < fAbsValue) && !(fInt > fAbsValue))); } return false; } // Returns 1-based index of least significant bit in a number, or zero if number is zero int findFirstSetBit(unsigned n) { #if HAVE_GCC_BUILTIN_FFS return __builtin_ffs(n); #elif defined _WIN32 unsigned long pos; unsigned char bNonZero = _BitScanForward(&pos, n); return (bNonZero == 0) ? 0 : pos + 1; #else return ffs(n); #endif } /** Returns number of binary bits for fractional part of the number Expects a proper non-negative double value, not +-INF, not NAN */ int getBitsInFracPart(double fAbsValue) { assert(rtl::math::isFinite(fAbsValue) && fAbsValue >= 0.0); if (fAbsValue == 0.0) return 0; auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue); int nExponent = pValParts->inf_parts.exponent - 1023; if (nExponent >= 52) return 0; // All bits in fraction are in integer part of the number int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo); if (nLeastSignificant == 0) { nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi); if (nLeastSignificant == 0) nLeastSignificant = 53; // the implied leading 1 is the least significant else nLeastSignificant += 32; } int nFracSignificant = 53 - nLeastSignificant; int nBitsInFracPart = nFracSignificant - nExponent; return std::max(nBitsInFracPart, 0); } template< typename T > inline void doubleToString(typename T::String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, typename T::Char cDecSeparator, sal_Int32 const * pGroups, typename T::Char cGroupSeparator, bool bEraseTrailingDecZeros) { static double const nRoundVal[] = { 5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6, 0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14 }; // sign adjustment, instead of testing for fValue<0.0 this will also fetch // -0.0 bool bSign = rtl::math::isSignBitSet(fValue); if (bSign) fValue = -fValue; if (rtl::math::isNan(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN"); if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("NaN")); return; } bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way... if (bHuge || rtl::math::isInf(fValue)) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF"); if (!pResultCapacity) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } if ( bSign ) T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("-")); T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("INF")); return; } // Use integer representation for integer values that fit into the // mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy. const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1; if ((eFormat == rtl_math_StringFormat_Automatic || eFormat == rtl_math_StringFormat_F) && fValue <= static_cast< double >(kMaxInt)) { sal_Int64 nInt = static_cast< sal_Int64 >(fValue); // Check the integer range again because double comparison may yield // true within the precision range. if (nInt <= kMaxInt && static_cast< double >(nInt) == fValue) { if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = 0; else nDecPlaces = ::std::max< sal_Int32 >(::std::min(nDecPlaces, 15), -15); if (bEraseTrailingDecZeros && nDecPlaces > 0) nDecPlaces = 0; // Round before decimal position. if (nDecPlaces < 0) { sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1)); sal_Int64 nTemp = nInt / nRounding; int nDigit = nTemp % 10; nTemp /= 10; if (nDigit >= 5) ++nTemp; nTemp *= 10; nTemp *= nRounding; nInt = nTemp; nDecPlaces = 0; } // Max 1 sign, 16 integer digits, 15 group separators, 1 decimal // separator, 15 decimals digits. typename T::Char aBuf[64]; typename T::Char * pBuf = aBuf; typename T::Char * p = pBuf; // Backward fill. size_t nGrouping = 0; sal_Int32 nGroupDigits = 0; do { typename T::Char nDigit = nInt % 10; nInt /= 10; *p++ = nDigit + '0'; if (pGroups && pGroups[nGrouping] == ++nGroupDigits && nInt > 0 && cGroupSeparator) { *p++ = cGroupSeparator; if (pGroups[nGrouping+1]) ++nGrouping; nGroupDigits = 0; } } while (nInt > 0); if (bSign) *p++ = '-'; // Reverse buffer content. sal_Int32 n = (p - pBuf) / 2; for (sal_Int32 i=0; i < n; ++i) { ::std::swap( pBuf[i], p[-i-1]); } // Append decimals. if (nDecPlaces > 0) { *p++ = cDecSeparator; while (nDecPlaces--) *p++ = '0'; } if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); return; } } // find the exponent int nExp = 0; if ( fValue > 0.0 ) { // Cap nExp at a small value beyond which "fValue /= N10Exp" would lose precision (or N10Exp // might even be zero); that will produce output with the decimal point in a non-normalized // position, but the current quality of output for such small values is probably abysmal, // anyway: nExp = std::max( static_cast< int >(floor(log10(fValue))), std::numeric_limits::min_exponent10); double const N10Exp = getN10Exp(nExp); assert(N10Exp != 0); fValue /= N10Exp; } switch (eFormat) { case rtl_math_StringFormat_Automatic: { // E or F depending on exponent magnitude int nPrec; if (nExp <= -15 || nExp >= 15) // was <-16, >16 in ancient versions, which leads to inaccuracies { nPrec = 14; eFormat = rtl_math_StringFormat_E; } else { if (nExp < 14) { nPrec = 15 - nExp - 1; eFormat = rtl_math_StringFormat_F; } else { nPrec = 15; eFormat = rtl_math_StringFormat_F; } } if (nDecPlaces == rtl_math_DecimalPlaces_Max) nDecPlaces = nPrec; } break; case rtl_math_StringFormat_G : case rtl_math_StringFormat_G1 : case rtl_math_StringFormat_G2 : { // G-Point, similar to sprintf %G if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance) nDecPlaces = 6; if (nExp < -4 || nExp >= nDecPlaces) { nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1); if (eFormat == rtl_math_StringFormat_G) eFormat = rtl_math_StringFormat_E; else if (eFormat == rtl_math_StringFormat_G2) eFormat = rtl_math_StringFormat_E2; else if (eFormat == rtl_math_StringFormat_G1) eFormat = rtl_math_StringFormat_E1; } else { nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1); eFormat = rtl_math_StringFormat_F; } } break; default: break; } sal_Int32 nDigits = nDecPlaces + 1; if (eFormat == rtl_math_StringFormat_F) nDigits += nExp; // Round the number if(nDigits >= 0) { if ((fValue += nRoundVal[std::min(nDigits, 15)] ) >= 10) { fValue = 1.0; nExp++; if (eFormat == rtl_math_StringFormat_F) nDigits++; } } static sal_Int32 const nBufMax = 256; typename T::Char aBuf[nBufMax]; typename T::Char * pBuf; sal_Int32 nBuf = static_cast< sal_Int32 > (nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp)) : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0); if (nBuf > nBufMax) { pBuf = static_cast< typename T::Char * >( rtl_allocateMemory(nBuf * sizeof (typename T::Char))); OSL_ENSURE(pBuf, "Out of memory"); } else { pBuf = aBuf; } typename T::Char * p = pBuf; if ( bSign ) *p++ = static_cast< typename T::Char >('-'); bool bHasDec = false; int nDecPos; // Check for F format and number < 1 if(eFormat == rtl_math_StringFormat_F) { if(nExp < 0) { *p++ = static_cast< typename T::Char >('0'); if (nDecPlaces > 0) { *p++ = cDecSeparator; bHasDec = true; } sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1); while((i--) > 0) { *p++ = static_cast< typename T::Char >('0'); } nDecPos = 0; } else { nDecPos = nExp + 1; } } else { nDecPos = 1; } int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0; if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator) { while (nGrouping + pGroups[nGroupSelector] < nDecPos) { nGrouping += pGroups[nGroupSelector]; if (pGroups[nGroupSelector+1]) { if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos) break; // while ++nGroupSelector; } else if (!nGroupExceed) { nGroupExceed = nGrouping; } } } // print the number if (nDigits > 0) { for (int i = 0; ; i++) { if (i < 15) // was 16 in ancient versions, which leads to inaccuracies { int nDigit; if (nDigits-1 == 0 && i > 0 && i < 14) nDigit = static_cast< int >(floor( fValue + nCorrVal[15-i])); else nDigit = static_cast< int >(fValue + 1E-15); if (nDigit >= 10) { // after-treatment of up-rounding to the next decade sal_Int32 sLen = static_cast< long >(p-pBuf)-1; if (sLen == -1) { p = pBuf; if (eFormat == rtl_math_StringFormat_F) { *p++ = static_cast< typename T::Char >('1'); *p++ = static_cast< typename T::Char >('0'); } else { *p++ = static_cast< typename T::Char >('1'); *p++ = cDecSeparator; *p++ = static_cast< typename T::Char >('0'); nExp++; bHasDec = true; } } else { for (sal_Int32 j = sLen; j >= 0; j--) { typename T::Char cS = pBuf[j]; if (cS != cDecSeparator) { if (cS != static_cast< typename T::Char >('9')) { pBuf[j] = ++cS; j = -1; // break loop } else { pBuf[j] = static_cast< typename T::Char >('0'); if (j == 0) { if (eFormat == rtl_math_StringFormat_F) { // insert '1' typename T::Char * px = p++; while (pBuf < px) { *px = *(px-1); px--; } pBuf[0] = static_cast< typename T::Char >('1'); } else { pBuf[j] = static_cast< typename T::Char >('1'); nExp++; } } } } } *p++ = static_cast< typename T::Char >('0'); } fValue = 0.0; } else { *p++ = static_cast< typename T::Char >( nDigit + static_cast< typename T::Char >('0') ); fValue = (fValue - nDigit) * 10.0; } } else { *p++ = static_cast< typename T::Char >('0'); } if (!--nDigits) break; // for if (nDecPos) { if(!--nDecPos) { *p++ = cDecSeparator; bHasDec = true; } else if (nDecPos == nGrouping) { *p++ = cGroupSeparator; nGrouping -= pGroups[nGroupSelector]; if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } } } } if (!bHasDec && eFormat == rtl_math_StringFormat_F) { // nDecPlaces < 0 did round the value while (--nDecPos > 0) { // fill before decimal point if (nDecPos == nGrouping) { *p++ = cGroupSeparator; nGrouping -= pGroups[nGroupSelector]; if (nGroupSelector && nGrouping < nGroupExceed) --nGroupSelector; } *p++ = static_cast< typename T::Char >('0'); } } if (bEraseTrailingDecZeros && bHasDec && p > pBuf) { while (*(p-1) == static_cast< typename T::Char >('0')) { p--; } if (*(p-1) == cDecSeparator) p--; } // Print the exponent ('E', followed by '+' or '-', followed by exactly // three digits for rtl_math_StringFormat_E). The code in // rtl_[u]str_valueOf{Float|Double} relies on this format. if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1) { if (p == pBuf) *p++ = static_cast< typename T::Char >('1'); // maybe no nDigits if nDecPlaces < 0 *p++ = static_cast< typename T::Char >('E'); if(nExp < 0) { nExp = -nExp; *p++ = static_cast< typename T::Char >('-'); } else { *p++ = static_cast< typename T::Char >('+'); } if (eFormat == rtl_math_StringFormat_E || nExp >= 100) *p++ = static_cast< typename T::Char >( nExp / 100 + static_cast< typename T::Char >('0') ); nExp %= 100; if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10) *p++ = static_cast< typename T::Char >( nExp / 10 + static_cast< typename T::Char >('0') ); *p++ = static_cast< typename T::Char >( nExp % 10 + static_cast< typename T::Char >('0') ); } if (!pResultCapacity) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); if (pBuf != &aBuf[0]) rtl_freeMemory(pBuf); } } void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Char cDecSeparator, sal_Int32 const * pGroups, sal_Char cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< StringTraits >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Unicode cDecSeparator, sal_Int32 const * pGroups, sal_Unicode cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< UStringTraits >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } namespace { // if nExp * 10 + nAdd would result in overflow inline bool long10Overflow( long& nExp, int nAdd ) { if ( nExp > (LONG_MAX/10) || (nExp == (LONG_MAX/10) && nAdd > (LONG_MAX%10)) ) { nExp = LONG_MAX; return true; } return false; } template< typename CharT > inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT cDecSeparator, CharT cGroupSeparator, rtl_math_ConversionStatus * pStatus, CharT const ** pParsedEnd) { double fVal = 0.0; rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok; CharT const * p0 = pBegin; while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t'))) { ++p0; } bool bSign; if (p0 != pEnd && *p0 == CharT('-')) { bSign = true; ++p0; } else { bSign = false; if (p0 != pEnd && *p0 == CharT('+')) ++p0; } CharT const * p = p0; bool bDone = false; // #i112652# XMLSchema-2 if ((pEnd - p) >= 3) { if ((CharT('N') == p[0]) && (CharT('a') == p[1]) && (CharT('N') == p[2])) { p += 3; rtl::math::setNan( &fVal ); bDone = true; } else if ((CharT('I') == p[0]) && (CharT('N') == p[1]) && (CharT('F') == p[2])) { p += 3; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; bDone = true; } } if (!bDone) // do not recognize e.g. NaN1.23 { // leading zeros and group separators may be safely ignored while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator)) { ++p; } CharT const * pFirstSignificant = p; long nValExp = 0; // carry along exponent of mantissa // integer part of mantissa for (; p != pEnd; ++p) { CharT c = *p; if (rtl::isAsciiDigit(c)) { fVal = fVal * 10.0 + static_cast< double >( c - CharT('0') ); ++nValExp; } else if (c != cGroupSeparator) { break; } } // fraction part of mantissa if (p != pEnd && *p == cDecSeparator) { ++p; double fFrac = 0.0; long nFracExp = 0; while (p != pEnd && *p == CharT('0')) { --nFracExp; ++p; } if (nValExp == 0) nValExp = nFracExp - 1; // no integer part => fraction exponent // one decimal digit needs ld(10) ~= 3.32 bits static const int nSigs = (DBL_MANT_DIG / 3) + 1; int nDigs = 0; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) { break; } if ( nDigs < nSigs ) { // further digits (more than nSigs) don't have any // significance fFrac = fFrac * 10.0 + static_cast(c - CharT('0')); --nFracExp; ++nDigs; } } if (fFrac != 0.0) { fVal += rtl::math::pow10Exp( fFrac, nFracExp ); } else if (nValExp < 0) { if (pFirstSignificant + 1 == p) { // No digit at all, only separator(s) without integer or // fraction part. Bail out. No number. No error. if (pStatus) *pStatus = eStatus; if (pParsedEnd) *pParsedEnd = pBegin; return fVal; } nValExp = 0; // no digit other than 0 after decimal point } } if (nValExp > 0) --nValExp; // started with offset +1 at the first mantissa digit // Exponent if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e'))) { CharT const * const pExponent = p; ++p; bool bExpSign; if (p != pEnd && *p == CharT('-')) { bExpSign = true; ++p; } else { bExpSign = false; if (p != pEnd && *p == CharT('+')) ++p; } CharT const * const pFirstExpDigit = p; if ( fVal == 0.0 ) { // no matter what follows, zero stays zero, but carry on the // offset while (p != pEnd && rtl::isAsciiDigit(*p)) { ++p; } if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan p = pExponent; } } else { bool bOverflow = false; long nExp = 0; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) break; int i = c - CharT('0'); if ( long10Overflow( nExp, i ) ) bOverflow = true; else nExp = nExp * 10 + i; } if ( nExp ) { if ( bExpSign ) nExp = -nExp; long nAllExp(0); if (!bOverflow) bOverflow = o3tl::checked_add(nExp, nValExp, nAllExp); if ( nAllExp > DBL_MAX_10_EXP || (bOverflow && !bExpSign) ) { // overflow fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; } else if ((nAllExp < DBL_MIN_10_EXP) || (bOverflow && bExpSign) ) { // underflow fVal = 0.0; eStatus = rtl_math_ConversionStatus_OutOfRange; } else if ( nExp > DBL_MAX_10_EXP || nExp < DBL_MIN_10_EXP ) { // compensate exponents fVal = rtl::math::pow10Exp( fVal, -nValExp ); fVal = rtl::math::pow10Exp( fVal, nAllExp ); } else { fVal = rtl::math::pow10Exp( fVal, nExp ); // normal } } else if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan p = pExponent; } } } else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#') && p[-1] == cDecSeparator && p[-2] == CharT('1')) { if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N') && p[3] == CharT('F')) { // "1.#INF", "+1.#INF", "-1.#INF" p += 4; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; } else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A') && p[3] == CharT('N')) { // "1.#NAN", "+1.#NAN", "-1.#NAN" p += 4; rtl::math::setNan( &fVal ); if (bSign) { union { double sd; sal_math_Double md; } m; m.sd = fVal; m.md.w32_parts.msw |= 0x80000000; // create negative NaN fVal = m.sd; bSign = false; // don't negate again } // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) { ++p; } } } } // overflow also if more than DBL_MAX_10_EXP digits without decimal // separator, or 0. and more than DBL_MIN_10_EXP digits, ... bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way... if (bHuge) eStatus = rtl_math_ConversionStatus_OutOfRange; if (bSign) fVal = -fVal; if (pStatus) *pStatus = eStatus; if (pParsedEnd) *pParsedEnd = p == p0 ? pBegin : p; return fVal; } } double SAL_CALL rtl_math_stringToDouble(sal_Char const * pBegin, sal_Char const * pEnd, sal_Char cDecSeparator, sal_Char cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Char const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble( reinterpret_cast(pBegin), reinterpret_cast(pEnd), static_cast(cDecSeparator), static_cast(cGroupSeparator), pStatus, reinterpret_cast(pParsedEnd)); } double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin, sal_Unicode const * pEnd, sal_Unicode cDecSeparator, sal_Unicode cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Unicode const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd); } double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, enum rtl_math_RoundingMode eMode) SAL_THROW_EXTERN_C() { OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20); if (fValue == 0.0) return fValue; if ( nDecPlaces == 0 && eMode == rtl_math_RoundingMode_Corrected ) return std::round( fValue ); // sign adjustment bool bSign = rtl::math::isSignBitSet( fValue ); if (bSign) fValue = -fValue; double fFac = 0; if (nDecPlaces != 0) { // max 20 decimals, we don't have unlimited precision // #38810# and no overflow on fValue*=fFac if (nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20)) return bSign ? -fValue : fValue; fFac = getN10Exp(nDecPlaces); fValue *= fFac; } switch ( eMode ) { case rtl_math_RoundingMode_Corrected : { int nExp; // exponent for correction if ( fValue > 0.0 ) nExp = static_cast( floor( log10( fValue ) ) ); else nExp = 0; int nIndex; if (nExp < 0) nIndex = 15; else if (nExp >= 14) nIndex = 0; else nIndex = 15 - nExp; fValue = floor(fValue + 0.5 + nCorrVal[nIndex]); } break; case rtl_math_RoundingMode_Down: fValue = rtl::math::approxFloor(fValue); break; case rtl_math_RoundingMode_Up: fValue = rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_Floor: fValue = bSign ? rtl::math::approxCeil(fValue) : rtl::math::approxFloor( fValue ); break; case rtl_math_RoundingMode_Ceiling: fValue = bSign ? rtl::math::approxFloor(fValue) : rtl::math::approxCeil(fValue); break; case rtl_math_RoundingMode_HalfDown : { double f = floor(fValue); fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfUp: { double f = floor(fValue); fValue = ((fValue - f) < 0.5) ? f : ceil(fValue); } break; case rtl_math_RoundingMode_HalfEven: #if defined FLT_ROUNDS /* Use fast version. FLT_ROUNDS may be defined to a function by some compilers! DBL_EPSILON is the smallest fractional number which can be represented, its reciprocal is therefore the smallest number that cannot have a fractional part. Once you add this reciprocal to `x', its fractional part is stripped off. Simply subtracting the reciprocal back out returns `x' without its fractional component. Simple, clever, and elegant - thanks to Ross Cottrell, the original author, who placed it into public domain. volatile: prevent compiler from being too smart */ if (FLT_ROUNDS == 1) { volatile double x = fValue + 1.0 / DBL_EPSILON; fValue = x - 1.0 / DBL_EPSILON; } else #endif // FLT_ROUNDS { double f = floor(fValue); if ((fValue - f) != 0.5) { fValue = floor( fValue + 0.5 ); } else { double g = f / 2.0; fValue = (g == floor( g )) ? f : (f + 1.0); } } break; default: OSL_ASSERT(false); break; } if (nDecPlaces != 0) fValue /= fFac; return bSign ? -fValue : fValue; } double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C() { return fValue * getN10Exp(nExp); } double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C() { const double fBigInt = 2199023255552.0; // 2^41 -> only 11 bits left for fractional part, fine as decimal if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue) || fValue > fBigInt) { // We don't handle these conditions. Bail out. return fValue; } double fOrigValue = fValue; bool bSign = ::rtl::math::isSignBitSet(fValue); if (bSign) fValue = -fValue; // If the value is either integer representable as double, // or only has small number of bits in fraction part, then we need not do any approximation if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11) return fOrigValue; int nExp = static_cast< int >(floor(log10(fValue))); nExp = 14 - nExp; double fExpValue = getN10Exp(nExp); fValue *= fExpValue; // If the original value was near DBL_MIN we got an overflow. Restore and // bail out. if (!rtl::math::isFinite(fValue)) return fOrigValue; fValue = rtl_math_round(fValue, 0, rtl_math_RoundingMode_Corrected); fValue /= fExpValue; // If the original value was near DBL_MAX we got an overflow. Restore and // bail out. if (!rtl::math::isFinite(fValue)) return fOrigValue; return bSign ? -fValue : fValue; } bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C() { static const double e48 = 1.0 / (16777216.0 * 16777216.0); static const double e44 = e48 * 16.0; if (a == b) return true; if (a == 0.0 || b == 0.0) return false; const double d = fabs(a - b); if (!rtl::math::isFinite(d)) return false; // Nan or Inf involved if (d > ((a = fabs(a)) * e44) || d > ((b = fabs(b)) * e44)) return false; if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b)) return false; // special case for representable integers. return (d < a * e48 && d < b * e48); } double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C() { return expm1(fValue); } double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C() { #ifdef __APPLE__ if (fValue == -0.0) return fValue; // OS X 10.8 libc returns 0.0 for -0.0 #endif return log1p(fValue); } double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C() #if defined __clang__ __attribute__((no_sanitize("float-divide-by-zero"))) // atahn(1) -> inf #endif { return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue)); } /** Parent error function (erf) */ double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C() { return erf(x); } /** Parent complementary error function (erfc) */ double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C() { return erfc(x); } /** improved accuracy of asinh for |x| large and for x near zero @see #i97605# */ double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C() { if ( fX == 0.0 ) return 0.0; double fSign = 1.0; if ( fX < 0.0 ) { fX = - fX; fSign = -1.0; } if ( fX < 0.125 ) return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX))); if ( fX < 1.25e7 ) return fSign * log( fX + sqrt( 1.0 + fX*fX)); return fSign * log( 2.0*fX); } /** improved accuracy of acosh for x large and for x near 1 @see #i97605# */ double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C() { volatile double fZ = fX - 1.0; if (fX < 1.0) { double fResult; ::rtl::math::setNan( &fResult ); return fResult; } if ( fX == 1.0 ) return 0.0; if ( fX < 1.1 ) return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ)); if ( fX < 1.25e7 ) return log( fX + sqrt( fX*fX - 1.0)); return log( 2.0*fX); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */