/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "rtl/math.h" #include "osl/diagnose.h" #include "rtl/alloc.h" #include "rtl/character.hxx" #include "rtl/math.hxx" #include "rtl/strbuf.h" #include "rtl/string.h" #include "rtl/ustrbuf.h" #include "rtl/ustring.h" #include "sal/mathconf.h" #include "sal/types.h" #include <algorithm> #include <cassert> #include <float.h> #include <limits.h> #include <math.h> #include <stdlib.h> static int const n10Count = 16; static double const n10s[2][n10Count] = { { 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 }, { 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 } }; // return pow(10.0,nExp) optimized for exponents in the interval [-16,16] static double getN10Exp( int nExp ) { if ( nExp < 0 ) { // && -nExp > 0 necessary for std::numeric_limits<int>::min() // because -nExp = nExp if ( -nExp <= n10Count && -nExp > 0 ) return n10s[1][-nExp-1]; else return pow( 10.0, static_cast<double>( nExp ) ); } else if ( nExp > 0 ) { if ( nExp <= n10Count ) return n10s[0][nExp-1]; else return pow( 10.0, static_cast<double>( nExp ) ); } else // ( nExp == 0 ) return 1.0; } /** Approximation algorithm for erf for 0 < x < 0.65. */ static void lcl_Erf0065( double x, double& fVal ) { static const double pn[] = { 1.12837916709551256, 1.35894887627277916E-1, 4.03259488531795274E-2, 1.20339380863079457E-3, 6.49254556481904354E-5 }; static const double qn[] = { 1.00000000000000000, 4.53767041780002545E-1, 8.69936222615385890E-2, 8.49717371168693357E-3, 3.64915280629351082E-4 }; double fPSum = 0.0; double fQSum = 0.0; double fXPow = 1.0; for ( unsigned int i = 0; i <= 4; ++i ) { fPSum += pn[i]*fXPow; fQSum += qn[i]*fXPow; fXPow *= x*x; } fVal = x * fPSum / fQSum; } /** Approximation algorithm for erfc for 0.65 < x < 6.0. */ static void lcl_Erfc0600( double x, double& fVal ) { double fPSum = 0.0; double fQSum = 0.0; double fXPow = 1.0; const double *pn; const double *qn; if ( x < 2.2 ) { static const double pn22[] = { 9.99999992049799098E-1, 1.33154163936765307, 8.78115804155881782E-1, 3.31899559578213215E-1, 7.14193832506776067E-2, 7.06940843763253131E-3 }; static const double qn22[] = { 1.00000000000000000, 2.45992070144245533, 2.65383972869775752, 1.61876655543871376, 5.94651311286481502E-1, 1.26579413030177940E-1, 1.25304936549413393E-2 }; pn = pn22; qn = qn22; } else /* if ( x < 6.0 ) this is true, but the compiler does not know */ { static const double pn60[] = { 9.99921140009714409E-1, 1.62356584489366647, 1.26739901455873222, 5.81528574177741135E-1, 1.57289620742838702E-1, 2.25716982919217555E-2 }; static const double qn60[] = { 1.00000000000000000, 2.75143870676376208, 3.37367334657284535, 2.38574194785344389, 1.05074004614827206, 2.78788439273628983E-1, 4.00072964526861362E-2 }; pn = pn60; qn = qn60; } for ( unsigned int i = 0; i < 6; ++i ) { fPSum += pn[i]*fXPow; fQSum += qn[i]*fXPow; fXPow *= x; } fQSum += qn[6]*fXPow; fVal = exp( -1.0*x*x )* fPSum / fQSum; } /** Approximation algorithm for erfc for 6.0 < x < 26.54 (but used for all x > 6.0). */ static void lcl_Erfc2654( double x, double& fVal ) { static const double pn[] = { 5.64189583547756078E-1, 8.80253746105525775, 3.84683103716117320E1, 4.77209965874436377E1, 8.08040729052301677 }; static const double qn[] = { 1.00000000000000000, 1.61020914205869003E1, 7.54843505665954743E1, 1.12123870801026015E2, 3.73997570145040850E1 }; double fPSum = 0.0; double fQSum = 0.0; double fXPow = 1.0; for ( unsigned int i = 0; i <= 4; ++i ) { fPSum += pn[i]*fXPow; fQSum += qn[i]*fXPow; fXPow /= x*x; } fVal = exp(-1.0*x*x)*fPSum / (x*fQSum); } namespace { double const nKorrVal[] = { 0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8, 9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15 }; struct StringTraits { typedef sal_Char Char; typedef rtl_String String; static inline void createString(rtl_String ** pString, sal_Char const * pChars, sal_Int32 nLen) { rtl_string_newFromStr_WithLength(pString, pChars, nLen); } static inline void createBuffer(rtl_String ** pBuffer, sal_Int32 * pCapacity) { rtl_string_new_WithLength(pBuffer, *pCapacity); } static inline void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pChars, sal_Int32 nLen) { assert(pChars != nullptr); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static inline void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pStr, sal_Int32 nLen) { assert(pStr != nullptr); rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; struct UStringTraits { typedef sal_Unicode Char; typedef rtl_uString String; static inline void createString(rtl_uString ** pString, sal_Unicode const * pChars, sal_Int32 nLen) { rtl_uString_newFromStr_WithLength(pString, pChars, nLen); } static inline void createBuffer(rtl_uString ** pBuffer, sal_Int32 * pCapacity) { rtl_uString_new_WithLength(pBuffer, *pCapacity); } static inline void appendChars(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Unicode const * pChars, sal_Int32 nLen) { assert(pChars != nullptr); rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen); *pOffset += nLen; } static inline void appendAscii(rtl_uString ** pBuffer, sal_Int32 * pCapacity, sal_Int32 * pOffset, sal_Char const * pStr, sal_Int32 nLen) { rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr, nLen); *pOffset += nLen; } }; // Solaris C++ 5.2 compiler has problems when "StringT ** pResult" is // "typename T::String ** pResult" instead: template< typename T, typename StringT > inline void doubleToString(StringT ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, typename T::Char cDecSeparator, sal_Int32 const * pGroups, typename T::Char cGroupSeparator, bool bEraseTrailingDecZeros) { static double const nRoundVal[] = { 5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6, 0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14 }; // sign adjustment, instead of testing for fValue<0.0 this will also fetch // -0.0 bool bSign = rtl::math::isSignBitSet( fValue ); if( bSign ) fValue = -fValue; if ( rtl::math::isNan( fValue ) ) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN"); if (pResultCapacity == 0) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("NaN")); return; } bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way... if ( bHuge || rtl::math::isInf( fValue ) ) { // #i112652# XMLSchema-2 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF"); if (pResultCapacity == 0) { pResultCapacity = &nCapacity; T::createBuffer(pResult, pResultCapacity); nResultOffset = 0; } if ( bSign ) T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("-")); T::appendAscii(pResult, pResultCapacity, &nResultOffset, RTL_CONSTASCII_STRINGPARAM("INF")); return; } // find the exponent int nExp = 0; if ( fValue > 0.0 ) { nExp = static_cast< int >( floor( log10( fValue ) ) ); fValue /= getN10Exp( nExp ); } switch ( eFormat ) { case rtl_math_StringFormat_Automatic : { // E or F depending on exponent magnitude int nPrec; if ( nExp <= -15 || nExp >= 15 ) // #58531# was <-16, >16 { nPrec = 14; eFormat = rtl_math_StringFormat_E; } else { if ( nExp < 14 ) { nPrec = 15 - nExp - 1; eFormat = rtl_math_StringFormat_F; } else { nPrec = 15; eFormat = rtl_math_StringFormat_F; } } if ( nDecPlaces == rtl_math_DecimalPlaces_Max ) nDecPlaces = nPrec; } break; case rtl_math_StringFormat_G : case rtl_math_StringFormat_G1 : case rtl_math_StringFormat_G2 : { // G-Point, similar to sprintf %G if ( nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance ) nDecPlaces = 6; if ( nExp < -4 || nExp >= nDecPlaces ) { nDecPlaces = std::max< sal_Int32 >( 1, nDecPlaces - 1 ); if( eFormat == rtl_math_StringFormat_G ) eFormat = rtl_math_StringFormat_E; else if( eFormat == rtl_math_StringFormat_G2 ) eFormat = rtl_math_StringFormat_E2; else if( eFormat == rtl_math_StringFormat_G1 ) eFormat = rtl_math_StringFormat_E1; } else { nDecPlaces = std::max< sal_Int32 >( 0, nDecPlaces - nExp - 1 ); eFormat = rtl_math_StringFormat_F; } } break; default: break; } sal_Int32 nDigits = nDecPlaces + 1; if( eFormat == rtl_math_StringFormat_F ) nDigits += nExp; // Round the number if( nDigits >= 0 ) { if( ( fValue += nRoundVal[ nDigits > 15 ? 15 : nDigits ] ) >= 10 ) { fValue = 1.0; nExp++; if( eFormat == rtl_math_StringFormat_F ) nDigits++; } } static sal_Int32 const nBufMax = 256; typename T::Char aBuf[nBufMax]; typename T::Char * pBuf; sal_Int32 nBuf = static_cast< sal_Int32 > ( nDigits <= 0 ? std::max< sal_Int32 >( nDecPlaces, abs(nExp) ) : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0); if ( nBuf > nBufMax ) { pBuf = static_cast< typename T::Char * >( rtl_allocateMemory(nBuf * sizeof (typename T::Char))); OSL_ENSURE(pBuf != 0, "Out of memory"); } else pBuf = aBuf; typename T::Char * p = pBuf; if ( bSign ) *p++ = static_cast< typename T::Char >('-'); bool bHasDec = false; int nDecPos; // Check for F format and number < 1 if( eFormat == rtl_math_StringFormat_F ) { if( nExp < 0 ) { *p++ = static_cast< typename T::Char >('0'); if ( nDecPlaces > 0 ) { *p++ = cDecSeparator; bHasDec = true; } sal_Int32 i = ( nDigits <= 0 ? nDecPlaces : -nExp - 1 ); while( (i--) > 0 ) *p++ = static_cast< typename T::Char >('0'); nDecPos = 0; } else nDecPos = nExp + 1; } else nDecPos = 1; int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0; if ( nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator ) { while ( nGrouping + pGroups[nGroupSelector] < nDecPos ) { nGrouping += pGroups[ nGroupSelector ]; if ( pGroups[nGroupSelector+1] ) { if ( nGrouping + pGroups[nGroupSelector+1] >= nDecPos ) break; // while ++nGroupSelector; } else if ( !nGroupExceed ) nGroupExceed = nGrouping; } } // print the number if( nDigits > 0 ) { for ( int i = 0; ; i++ ) { if( i < 15 ) { int nDigit; if (nDigits-1 == 0 && i > 0 && i < 14) nDigit = static_cast< int >( floor( fValue + nKorrVal[15-i] ) ); else nDigit = static_cast< int >( fValue + 1E-15 ); if (nDigit >= 10) { // after-treatment of up-rounding to the next decade sal_Int32 sLen = static_cast< long >(p-pBuf)-1; if (sLen == -1) { p = pBuf; if ( eFormat == rtl_math_StringFormat_F ) { *p++ = static_cast< typename T::Char >('1'); *p++ = static_cast< typename T::Char >('0'); } else { *p++ = static_cast< typename T::Char >('1'); *p++ = cDecSeparator; *p++ = static_cast< typename T::Char >('0'); nExp++; bHasDec = true; } } else { for (sal_Int32 j = sLen; j >= 0; j--) { typename T::Char cS = pBuf[j]; if (cS != cDecSeparator) { if ( cS != static_cast< typename T::Char >('9')) { pBuf[j] = ++cS; j = -1; // break loop } else { pBuf[j] = static_cast< typename T::Char >('0'); if (j == 0) { if ( eFormat == rtl_math_StringFormat_F) { // insert '1' typename T::Char * px = p++; while ( pBuf < px ) { *px = *(px-1); px--; } pBuf[0] = static_cast< typename T::Char >('1'); } else { pBuf[j] = static_cast< typename T::Char >('1'); nExp++; } } } } } *p++ = static_cast< typename T::Char >('0'); } fValue = 0.0; } else { *p++ = static_cast< typename T::Char >( nDigit + static_cast< typename T::Char >('0') ); fValue = ( fValue - nDigit ) * 10.0; } } else *p++ = static_cast< typename T::Char >('0'); if( !--nDigits ) break; // for if( nDecPos ) { if( !--nDecPos ) { *p++ = cDecSeparator; bHasDec = true; } else if ( nDecPos == nGrouping ) { *p++ = cGroupSeparator; nGrouping -= pGroups[ nGroupSelector ]; if ( nGroupSelector && nGrouping < nGroupExceed ) --nGroupSelector; } } } } if ( !bHasDec && eFormat == rtl_math_StringFormat_F ) { // nDecPlaces < 0 did round the value while ( --nDecPos > 0 ) { // fill before decimal point if ( nDecPos == nGrouping ) { *p++ = cGroupSeparator; nGrouping -= pGroups[ nGroupSelector ]; if ( nGroupSelector && nGrouping < nGroupExceed ) --nGroupSelector; } *p++ = static_cast< typename T::Char >('0'); } } if ( bEraseTrailingDecZeros && bHasDec && p > pBuf ) { while ( *(p-1) == static_cast< typename T::Char >('0') ) p--; if ( *(p-1) == cDecSeparator ) p--; } // Print the exponent ('E', followed by '+' or '-', followed by exactly // three digits for rtl_math_StringFormat_E). The code in // rtl_[u]str_valueOf{Float|Double} relies on this format. if( eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1 ) { if ( p == pBuf ) *p++ = static_cast< typename T::Char >('1'); // maybe no nDigits if nDecPlaces < 0 *p++ = static_cast< typename T::Char >('E'); if( nExp < 0 ) { nExp = -nExp; *p++ = static_cast< typename T::Char >('-'); } else *p++ = static_cast< typename T::Char >('+'); if ( eFormat == rtl_math_StringFormat_E || nExp >= 100 ) *p++ = static_cast< typename T::Char >( nExp / 100 + static_cast< typename T::Char >('0') ); nExp %= 100; if ( eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10 ) *p++ = static_cast< typename T::Char >( nExp / 10 + static_cast< typename T::Char >('0') ); *p++ = static_cast< typename T::Char >( nExp % 10 + static_cast< typename T::Char >('0') ); } if (pResultCapacity == 0) T::createString(pResult, pBuf, p - pBuf); else T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf); if ( pBuf != &aBuf[0] ) rtl_freeMemory(pBuf); } } void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Char cDecSeparator, sal_Int32 const * pGroups, sal_Char cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< StringTraits, StringTraits::String >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult, sal_Int32 * pResultCapacity, sal_Int32 nResultOffset, double fValue, rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces, sal_Unicode cDecSeparator, sal_Int32 const * pGroups, sal_Unicode cGroupSeparator, sal_Bool bEraseTrailingDecZeros) SAL_THROW_EXTERN_C() { doubleToString< UStringTraits, UStringTraits::String >( pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces, cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); } namespace { // if nExp * 10 + nAdd would result in overflow inline bool long10Overflow( long& nExp, int nAdd ) { if ( nExp > (LONG_MAX/10) || (nExp == (LONG_MAX/10) && nAdd > (LONG_MAX%10)) ) { nExp = LONG_MAX; return true; } return false; } template< typename CharT > inline double stringToDouble(CharT const * pBegin, CharT const * pEnd, CharT cDecSeparator, CharT cGroupSeparator, rtl_math_ConversionStatus * pStatus, CharT const ** pParsedEnd) { double fVal = 0.0; rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok; CharT const * p0 = pBegin; while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t'))) ++p0; bool bSign; if (p0 != pEnd && *p0 == CharT('-')) { bSign = true; ++p0; } else { bSign = false; if (p0 != pEnd && *p0 == CharT('+')) ++p0; } CharT const * p = p0; bool bDone = false; // #i112652# XMLSchema-2 if (3 >= (pEnd - p)) { if ((CharT('N') == p[0]) && (CharT('a') == p[1]) && (CharT('N') == p[2])) { p += 3; rtl::math::setNan( &fVal ); bDone = true; } else if ((CharT('I') == p[0]) && (CharT('N') == p[1]) && (CharT('F') == p[2])) { p += 3; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; bDone = true; } } if (!bDone) // do not recognize e.g. NaN1.23 { // leading zeros and group separators may be safely ignored while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator)) ++p; long nValExp = 0; // carry along exponent of mantissa // integer part of mantissa for (; p != pEnd; ++p) { CharT c = *p; if (rtl::isAsciiDigit(c)) { fVal = fVal * 10.0 + static_cast< double >( c - CharT('0') ); ++nValExp; } else if (c != cGroupSeparator) break; } // fraction part of mantissa if (p != pEnd && *p == cDecSeparator) { ++p; double fFrac = 0.0; long nFracExp = 0; while (p != pEnd && *p == CharT('0')) { --nFracExp; ++p; } if ( nValExp == 0 ) nValExp = nFracExp - 1; // no integer part => fraction exponent // one decimal digit needs ld(10) ~= 3.32 bits static const int nSigs = (DBL_MANT_DIG / 3) + 1; int nDigs = 0; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) break; if ( nDigs < nSigs ) { // further digits (more than nSigs) don't have any // significance fFrac = fFrac * 10.0 + static_cast<double>(c - CharT('0')); --nFracExp; ++nDigs; } } if ( fFrac != 0.0 ) fVal += rtl::math::pow10Exp( fFrac, nFracExp ); else if ( nValExp < 0 ) nValExp = 0; // no digit other than 0 after decimal point } if ( nValExp > 0 ) --nValExp; // started with offset +1 at the first mantissa digit // Exponent if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e'))) { CharT const * const pExponent = p; ++p; bool bExpSign; if (p != pEnd && *p == CharT('-')) { bExpSign = true; ++p; } else { bExpSign = false; if (p != pEnd && *p == CharT('+')) ++p; } CharT const * const pFirstExpDigit = p; if ( fVal == 0.0 ) { // no matter what follows, zero stays zero, but carry on the // offset while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan p = pExponent; } } else { bool bOverflow = false; long nExp = 0; for (; p != pEnd; ++p) { CharT c = *p; if (!rtl::isAsciiDigit(c)) break; int i = c - CharT('0'); if ( long10Overflow( nExp, i ) ) bOverflow = true; else nExp = nExp * 10 + i; } if ( nExp ) { if ( bExpSign ) nExp = -nExp; long nAllExp = ( bOverflow ? 0 : nExp + nValExp ); if ( nAllExp > DBL_MAX_10_EXP || (bOverflow && !bExpSign) ) { // overflow fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; } else if ((nAllExp < DBL_MIN_10_EXP) || (bOverflow && bExpSign) ) { // underflow fVal = 0.0; eStatus = rtl_math_ConversionStatus_OutOfRange; } else if ( nExp > DBL_MAX_10_EXP || nExp < DBL_MIN_10_EXP ) { // compensate exponents fVal = rtl::math::pow10Exp( fVal, -nValExp ); fVal = rtl::math::pow10Exp( fVal, nAllExp ); } else fVal = rtl::math::pow10Exp( fVal, nExp ); // normal } else if (p == pFirstExpDigit) { // no digits in exponent, reset end of scan p = pExponent; } } } else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#') && p[-1] == cDecSeparator && p[-2] == CharT('1')) { if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N') && p[3] == CharT('F')) { // "1.#INF", "+1.#INF", "-1.#INF" p += 4; fVal = HUGE_VAL; eStatus = rtl_math_ConversionStatus_OutOfRange; // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; } else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A') && p[3] == CharT('N')) { // "1.#NAN", "+1.#NAN", "-1.#NAN" p += 4; rtl::math::setNan( &fVal ); if (bSign) { union { double sd; sal_math_Double md; } m; m.sd = fVal; m.md.w32_parts.msw |= 0x80000000; // create negative NaN fVal = m.sd; bSign = false; // don't negate again } // Eat any further digits: while (p != pEnd && rtl::isAsciiDigit(*p)) ++p; } } } // overflow also if more than DBL_MAX_10_EXP digits without decimal // separator, or 0. and more than DBL_MIN_10_EXP digits, ... bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way... if ( bHuge ) eStatus = rtl_math_ConversionStatus_OutOfRange; if ( bSign ) fVal = -fVal; if (pStatus != 0) *pStatus = eStatus; if (pParsedEnd != 0) *pParsedEnd = p == p0 ? pBegin : p; return fVal; } } double SAL_CALL rtl_math_stringToDouble(sal_Char const * pBegin, sal_Char const * pEnd, sal_Char cDecSeparator, sal_Char cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Char const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd); } double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin, sal_Unicode const * pEnd, sal_Unicode cDecSeparator, sal_Unicode cGroupSeparator, rtl_math_ConversionStatus * pStatus, sal_Unicode const ** pParsedEnd) SAL_THROW_EXTERN_C() { return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd); } double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, enum rtl_math_RoundingMode eMode) SAL_THROW_EXTERN_C() { OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20); if ( fValue == 0.0 ) return fValue; // sign adjustment bool bSign = rtl::math::isSignBitSet( fValue ); if ( bSign ) fValue = -fValue; double fFac = 0; if ( nDecPlaces != 0 ) { // max 20 decimals, we don't have unlimited precision // #38810# and no overflow on fValue*=fFac if ( nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20) ) return bSign ? -fValue : fValue; fFac = getN10Exp( nDecPlaces ); fValue *= fFac; } //else //! uninitialized fFac, not needed switch ( eMode ) { case rtl_math_RoundingMode_Corrected : { int nExp; // exponent for correction if ( fValue > 0.0 ) nExp = static_cast<int>( floor( log10( fValue ) ) ); else nExp = 0; int nIndex = 15 - nExp; if ( nIndex > 15 ) nIndex = 15; else if ( nIndex <= 1 ) nIndex = 0; fValue = floor( fValue + 0.5 + nKorrVal[nIndex] ); } break; case rtl_math_RoundingMode_Down : fValue = rtl::math::approxFloor( fValue ); break; case rtl_math_RoundingMode_Up : fValue = rtl::math::approxCeil( fValue ); break; case rtl_math_RoundingMode_Floor : fValue = bSign ? rtl::math::approxCeil( fValue ) : rtl::math::approxFloor( fValue ); break; case rtl_math_RoundingMode_Ceiling : fValue = bSign ? rtl::math::approxFloor( fValue ) : rtl::math::approxCeil( fValue ); break; case rtl_math_RoundingMode_HalfDown : { double f = floor( fValue ); fValue = ((fValue - f) <= 0.5) ? f : ceil( fValue ); } break; case rtl_math_RoundingMode_HalfUp : { double f = floor( fValue ); fValue = ((fValue - f) < 0.5) ? f : ceil( fValue ); } break; case rtl_math_RoundingMode_HalfEven : #if defined FLT_ROUNDS /* Use fast version. FLT_ROUNDS may be defined to a function by some compilers! DBL_EPSILON is the smallest fractional number which can be represented, its reciprocal is therefore the smallest number that cannot have a fractional part. Once you add this reciprocal to `x', its fractional part is stripped off. Simply subtracting the reciprocal back out returns `x' without its fractional component. Simple, clever, and elegant - thanks to Ross Cottrell, the original author, who placed it into public domain. volatile: prevent compiler from being too smart */ if ( FLT_ROUNDS == 1 ) { volatile double x = fValue + 1.0 / DBL_EPSILON; fValue = x - 1.0 / DBL_EPSILON; } else #endif // FLT_ROUNDS { double f = floor( fValue ); if ( (fValue - f) != 0.5 ) fValue = floor( fValue + 0.5 ); else { double g = f / 2.0; fValue = (g == floor( g )) ? f : (f + 1.0); } } break; default: OSL_ASSERT(false); break; } if ( nDecPlaces != 0 ) fValue /= fFac; return bSign ? -fValue : fValue; } double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C() { return fValue * getN10Exp( nExp ); } double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C() { if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue)) // We don't handle these conditions. Bail out. return fValue; double fOrigValue = fValue; bool bSign = ::rtl::math::isSignBitSet( fValue); if (bSign) fValue = -fValue; int nExp = static_cast<int>( floor( log10( fValue))); nExp = 14 - nExp; double fExpValue = getN10Exp( nExp); fValue *= fExpValue; // If the original value was near DBL_MIN we got an overflow. Restore and // bail out. if (!rtl::math::isFinite( fValue)) return fOrigValue; fValue = rtl_math_round( fValue, 0, rtl_math_RoundingMode_Corrected); fValue /= fExpValue; // If the original value was near DBL_MAX we got an overflow. Restore and // bail out. if (!rtl::math::isFinite( fValue)) return fOrigValue; return bSign ? -fValue : fValue; } double SAL_CALL rtl_math_expm1( double fValue ) SAL_THROW_EXTERN_C() { double fe = exp( fValue ); if (fe == 1.0) return fValue; if (fe-1.0 == -1.0) return -1.0; return (fe-1.0) * fValue / log(fe); } double SAL_CALL rtl_math_log1p( double fValue ) SAL_THROW_EXTERN_C() { // Use volatile because a compiler may be too smart "optimizing" the // condition such that in certain cases the else path was called even if // (fp==1.0) was true, where the term (fp-1.0) then resulted in 0.0 and // hence the entire expression resulted in NaN. // Happened with g++ 3.4.1 and an input value of 9.87E-18 volatile double fp = 1.0 + fValue; if (fp == 1.0) return fValue; else return log(fp) * fValue / (fp-1.0); } double SAL_CALL rtl_math_atanh( double fValue ) SAL_THROW_EXTERN_C() { return 0.5 * rtl_math_log1p( 2.0 * fValue / (1.0-fValue) ); } /** Parent error function (erf) that calls different algorithms based on the value of x. It takes care of cases where x is negative as erf is an odd function i.e. erf(-x) = -erf(x). Kramer, W., and Blomquist, F., 2000, Algorithms with Guaranteed Error Bounds for the Error Function and the Complementary Error Function http://www.math.uni-wuppertal.de/wrswt/literatur_en.html @author Kohei Yoshida <kohei@openoffice.org> @see #i55735# */ double SAL_CALL rtl_math_erf( double x ) SAL_THROW_EXTERN_C() { if( x == 0.0 ) return 0.0; // Otherwise we may end up in endless recursion through rtl_math_erfc(). if (!::rtl::math::isFinite(x)) return x; bool bNegative = false; if ( x < 0.0 ) { x = fabs( x ); bNegative = true; } double fErf = 1.0; if ( x < 1.0e-10 ) fErf = (double) (x*1.1283791670955125738961589031215452L); else if ( x < 0.65 ) lcl_Erf0065( x, fErf ); else fErf = 1.0 - rtl_math_erfc( x ); if ( bNegative ) fErf *= -1.0; return fErf; } /** Parent complementary error function (erfc) that calls different algorithms based on the value of x. It takes care of cases where x is negative as erfc satisfies relationship erfc(-x) = 2 - erfc(x). See the comment for Erf(x) for the source publication. @author Kohei Yoshida <kohei@openoffice.org> @see #i55735#, moved from module scaddins (#i97091#) */ double SAL_CALL rtl_math_erfc( double x ) SAL_THROW_EXTERN_C() { if ( x == 0.0 ) return 1.0; // Otherwise we may end up in endless recursion through rtl_math_erf(). if (!::rtl::math::isFinite(x)) return x; bool bNegative = false; if ( x < 0.0 ) { x = fabs( x ); bNegative = true; } double fErfc = 0.0; if ( x >= 0.65 ) { if ( x < 6.0 ) lcl_Erfc0600( x, fErfc ); else lcl_Erfc2654( x, fErfc ); } else fErfc = 1.0 - rtl_math_erf( x ); if ( bNegative ) fErfc = 2.0 - fErfc; return fErfc; } /** improved accuracy of asinh for |x| large and for x near zero @see #i97605# */ double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C() { if ( fX == 0.0 ) return 0.0; else { double fSign = 1.0; if ( fX < 0.0 ) { fX = - fX; fSign = -1.0; } if ( fX < 0.125 ) return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX))); else if ( fX < 1.25e7 ) return fSign * log( fX + sqrt( 1.0 + fX*fX)); else return fSign * log( 2.0*fX); } } /** improved accuracy of acosh for x large and for x near 1 @see #i97605# */ double SAL_CALL rtl_math_acosh( double fX ) SAL_THROW_EXTERN_C() { volatile double fZ = fX - 1.0; if ( fX < 1.0 ) { double fResult; ::rtl::math::setNan( &fResult ); return fResult; } else if ( fX == 1.0 ) return 0.0; else if ( fX < 1.1 ) return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ)); else if ( fX < 1.25e7 ) return log( fX + sqrt( fX*fX - 1.0)); else return log( 2.0*fX); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */