/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "fastserializer.hxx" #include #include #include #include #include #include #if OSL_DEBUG_LEVEL > 0 #include #include #endif using ::std::vector; using ::com::sun::star::uno::Sequence; using ::com::sun::star::io::XOutputStream; #define HAS_NAMESPACE(x) ((x & 0xffff0000) != 0) #define NAMESPACE(x) (x >> 16) #define TOKEN(x) (x & 0xffff) // number of characters without terminating 0 #define N_CHARS(string) (SAL_N_ELEMENTS(string) - 1) static const char sClosingBracket[] = ">"; static const char sSlashAndClosingBracket[] = "/>"; static const char sColon[] = ":"; static const char sOpeningBracket[] = "<"; static const char sOpeningBracketAndSlash[] = "\n"; namespace sax_fastparser { FastSaxSerializer::FastSaxSerializer( const css::uno::Reference< css::io::XOutputStream >& xOutputStream ) : maCachedOutputStream() , maMarkStack() , mbMarkStackEmpty(true) , mpDoubleStr(nullptr) , mnDoubleStrCapacity(RTL_STR_MAX_VALUEOFDOUBLE) , mbXescape(true) { rtl_string_new_WithLength(&mpDoubleStr, mnDoubleStrCapacity); mxFastTokenHandler = css::xml::sax::FastTokenHandler::create( ::comphelper::getProcessComponentContext()); assert(xOutputStream.is()); // cannot do anything without that maCachedOutputStream.setOutputStream( xOutputStream ); } FastSaxSerializer::~FastSaxSerializer() { rtl_string_release(mpDoubleStr); } void FastSaxSerializer::startDocument() { writeBytes(sXmlHeader, N_CHARS(sXmlHeader)); } void FastSaxSerializer::write( double value ) { rtl_math_doubleToString( &mpDoubleStr, &mnDoubleStrCapacity, 0, value, rtl_math_StringFormat_G, RTL_STR_MAX_VALUEOFDOUBLE - RTL_CONSTASCII_LENGTH("-x.E-xxx"), '.', nullptr, 0, true); write(mpDoubleStr->buffer, mpDoubleStr->length); // and "clear" the string mpDoubleStr->length = 0; mnDoubleStrCapacity = RTL_STR_MAX_VALUEOFDOUBLE; } void FastSaxSerializer::write( const OUString& sOutput, bool bEscape ) { write( OUStringToOString(sOutput, RTL_TEXTENCODING_UTF8), bEscape ); } void FastSaxSerializer::write( const OString& sOutput, bool bEscape ) { write( sOutput.getStr(), sOutput.getLength(), bEscape ); } /** Characters not allowed in XML 1.0 XML 1.1 would exclude only U+0000 */ static bool invalidChar( char c ) { if (static_cast(c) >= 0x20) return false; switch (c) { case 0x09: case 0x0a: case 0x0d: return false; } return true; } static bool isHexDigit( char c ) { return ('0' <= c && c <= '9') || ('A' <= c && c <= 'F') || ('a' <= c && c <= 'f'); } void FastSaxSerializer::write( const char* pStr, sal_Int32 nLen, bool bEscape ) { if (nLen == -1) nLen = pStr ? strlen(pStr) : 0; if ( !bEscape || // tdf#127274 don't escape the special VML shape type id "#_x0000_t202" (pStr && strcmp(pStr, "#_x0000_t202") == 0) ) { writeBytes( pStr, nLen ); return; } bool bGood = true; const sal_Int32 kXescapeLen = 7; char bufXescape[kXescapeLen+1]; sal_Int32 nNextXescape = 0; for (sal_Int32 i = 0; i < nLen; ++i) { char c = pStr[ i ]; switch( c ) { case '<': writeBytes( "<", 4 ); break; case '>': writeBytes( ">", 4 ); break; case '&': writeBytes( "&", 5 ); break; case '\'': writeBytes( "'", 6 ); break; case '"': writeBytes( """, 6 ); break; case '\t': #if 0 // Seems OOXML prefers the _xHHHH_ escape over the // entity in *some* cases, apparently in attribute // values but not in element data. // Would need to distinguish at a higher level. if (mbXescape) { snprintf( bufXescape, kXescapeLen+1, "_x%04x_", static_cast(static_cast(c))); writeBytes( bufXescape, kXescapeLen); } else #endif { writeBytes( " ", 4 ); } break; case '\n': #if 0 if (mbXescape) { snprintf( bufXescape, kXescapeLen+1, "_x%04x_", static_cast(static_cast(c))); writeBytes( bufXescape, kXescapeLen); } else #endif { writeBytes( " ", 5 ); } break; case '\r': #if 0 if (mbXescape) { snprintf( bufXescape, kXescapeLen+1, "_x%04x_", static_cast(static_cast(c))); writeBytes( bufXescape, kXescapeLen); } else #endif { writeBytes( " ", 5 ); } break; default: if (mbXescape) { char c1, c2, c3, c4; // Escape characters not valid in XML 1.0 as // _xHHHH_. A literal "_xHHHH_" has to be // escaped as _x005F_xHHHH_ (effectively // escaping the leading '_'). // See ECMA-376-1:2016 page 3736, // 22.4.2.4 bstr (Basic String) // for reference. if (c == '_' && i >= nNextXescape && i <= nLen - kXescapeLen && pStr[i+6] == '_' && ((pStr[i+1] | 0x20) == 'x') && isHexDigit( c1 = pStr[i+2] ) && isHexDigit( c2 = pStr[i+3] ) && isHexDigit( c3 = pStr[i+4] ) && isHexDigit( c4 = pStr[i+5] )) { // OOXML has the odd habit to write some // names using this that when re-saving // should *not* be escaped, specifically // _x0020_ for blanks in w:xpath values. if (!(c1 == '0' && c2 == '0' && c3 == '2' && c4 == '0')) { // When encountering "_x005F_xHHHH_" // assume that is an already escaped // sequence that was not unescaped and // shall be written as is, to not end // up with "_x005F_x005F_xHHHH_" and // repeated... if (c1 == '0' && c2 == '0' && c3 == '5' && (c4 | 0x20) == 'f' && i + kXescapeLen <= nLen - 6 && pStr[i+kXescapeLen+5] == '_' && ((pStr[i+kXescapeLen+0] | 0x20) == 'x') && isHexDigit( pStr[i+kXescapeLen+1] ) && isHexDigit( pStr[i+kXescapeLen+2] ) && isHexDigit( pStr[i+kXescapeLen+3] ) && isHexDigit( pStr[i+kXescapeLen+4] )) { writeBytes( &c, 1 ); // Remember this fake escapement. nNextXescape = i + kXescapeLen + 6; } else { writeBytes( "_x005F_", kXescapeLen); // Remember this escapement so in // _xHHHH_xHHHH_ only the first '_' // is escaped. nNextXescape = i + kXescapeLen; } break; } } if (invalidChar(c)) { snprintf( bufXescape, kXescapeLen+1, "_x%04x_", static_cast(static_cast(c))); writeBytes( bufXescape, kXescapeLen); break; } /* TODO: also U+FFFE and U+FFFF are not allowed * in XML 1.0, assuming we're writing UTF-8 * those should be escaped as well to be * conformant. Likely that would involve * scanning for both encoded sequences and * write as _xHHHH_? */ } #if OSL_DEBUG_LEVEL > 0 else { if (bGood && invalidChar(pStr[i])) { bGood = false; // The SAL_WARN() for the single character is // issued in writeBytes(), just gather for the // SAL_WARN_IF() below. } } #endif writeBytes( &c, 1 ); break; } } SAL_WARN_IF( !bGood && nLen > 1, "sax", "in '" << OString(pStr,std::min(nLen,42)) << "'"); } void FastSaxSerializer::endDocument() { assert(mbMarkStackEmpty && maMarkStack.empty()); maCachedOutputStream.flush(); } void FastSaxSerializer::writeId( ::sal_Int32 nElement ) { if( HAS_NAMESPACE( nElement ) ) { auto const Namespace(mxFastTokenHandler->getUTF8Identifier(NAMESPACE(nElement))); assert(Namespace.hasElements()); writeBytes(Namespace); writeBytes(sColon, N_CHARS(sColon)); auto const Element(mxFastTokenHandler->getUTF8Identifier(TOKEN(nElement))); assert(Element.hasElements()); writeBytes(Element); } else { auto const Element(mxFastTokenHandler->getUTF8Identifier(nElement)); assert(Element.hasElements()); writeBytes(Element); } } #ifdef DBG_UTIL OString FastSaxSerializer::getId( ::sal_Int32 nElement ) { if (HAS_NAMESPACE(nElement)) { Sequence const ns( mxFastTokenHandler->getUTF8Identifier(NAMESPACE(nElement))); Sequence const name( mxFastTokenHandler->getUTF8Identifier(TOKEN(nElement))); return OString(reinterpret_cast(ns.getConstArray()), ns.getLength()) + OString(sColon, N_CHARS(sColon)) + OString(reinterpret_cast(name.getConstArray()), name.getLength()); } else { Sequence const name( mxFastTokenHandler->getUTF8Identifier(nElement)); return OString(reinterpret_cast(name.getConstArray()), name.getLength()); } } #endif void FastSaxSerializer::startFastElement( ::sal_Int32 Element, FastAttributeList const * pAttrList ) { if ( !mbMarkStackEmpty ) { maCachedOutputStream.flush(); maMarkStack.top()->setCurrentElement( Element ); } #ifdef DBG_UTIL if (mbMarkStackEmpty) m_DebugStartedElements.push(Element); else maMarkStack.top()->m_DebugStartedElements.push_back(Element); #endif writeBytes(sOpeningBracket, N_CHARS(sOpeningBracket)); writeId(Element); if (pAttrList) writeFastAttributeList(*pAttrList); else writeTokenValueList(); writeBytes(sClosingBracket, N_CHARS(sClosingBracket)); } void FastSaxSerializer::endFastElement( ::sal_Int32 Element ) { #ifdef DBG_UTIL // Well-formedness constraint: Element Type Match if (mbMarkStackEmpty) { assert(!m_DebugStartedElements.empty()); assert(Element == m_DebugStartedElements.top()); m_DebugStartedElements.pop(); } else { if (dynamic_cast(maMarkStack.top().get())) { // Sort is always well-formed fragment assert(!maMarkStack.top()->m_DebugStartedElements.empty()); } if (maMarkStack.top()->m_DebugStartedElements.empty()) { maMarkStack.top()->m_DebugEndedElements.push_back(Element); } else { assert(Element == maMarkStack.top()->m_DebugStartedElements.back()); maMarkStack.top()->m_DebugStartedElements.pop_back(); } } #endif writeBytes(sOpeningBracketAndSlash, N_CHARS(sOpeningBracketAndSlash)); writeId(Element); writeBytes(sClosingBracket, N_CHARS(sClosingBracket)); } void FastSaxSerializer::singleFastElement( ::sal_Int32 Element, FastAttributeList const * pAttrList ) { if ( !mbMarkStackEmpty ) { maCachedOutputStream.flush(); maMarkStack.top()->setCurrentElement( Element ); } writeBytes(sOpeningBracket, N_CHARS(sOpeningBracket)); writeId(Element); if (pAttrList) writeFastAttributeList(*pAttrList); else writeTokenValueList(); writeBytes(sSlashAndClosingBracket, N_CHARS(sSlashAndClosingBracket)); } css::uno::Reference< css::io::XOutputStream > const & FastSaxSerializer::getOutputStream() const { return maCachedOutputStream.getOutputStream(); } void FastSaxSerializer::writeTokenValueList() { #ifdef DBG_UTIL ::std::set DebugAttributes; #endif for (const TokenValue & rTokenValue : maTokenValues) { writeBytes(sSpace, N_CHARS(sSpace)); sal_Int32 nToken = rTokenValue.nToken; writeId(nToken); #ifdef DBG_UTIL // Well-formedness constraint: Unique Att Spec OString const nameId(getId(nToken)); assert(DebugAttributes.find(nameId) == DebugAttributes.end()); DebugAttributes.insert(nameId); #endif writeBytes(sEqualSignAndQuote, N_CHARS(sEqualSignAndQuote)); write(rTokenValue.pValue, -1, true); writeBytes(sQuote, N_CHARS(sQuote)); } maTokenValues.clear(); } void FastSaxSerializer::writeFastAttributeList(FastAttributeList const & rAttrList) { #ifdef DBG_UTIL ::std::set DebugAttributes; #endif const std::vector< sal_Int32 >& Tokens = rAttrList.getFastAttributeTokens(); for (size_t j = 0; j < Tokens.size(); j++) { writeBytes(sSpace, N_CHARS(sSpace)); sal_Int32 nToken = Tokens[j]; writeId(nToken); #ifdef DBG_UTIL // Well-formedness constraint: Unique Att Spec OString const nameId(getId(nToken)); SAL_WARN_IF(DebugAttributes.find(nameId) != DebugAttributes.end(), "sax", "Duplicate attribute: " << nameId ); assert(DebugAttributes.find(nameId) == DebugAttributes.end()); DebugAttributes.insert(nameId); #endif writeBytes(sEqualSignAndQuote, N_CHARS(sEqualSignAndQuote)); write(rAttrList.getFastAttributeValue(j), rAttrList.AttributeValueLength(j), true); writeBytes(sQuote, N_CHARS(sQuote)); } } void FastSaxSerializer::mark(sal_Int32 const nTag, const Int32Sequence& rOrder) { if (rOrder.hasElements()) { std::shared_ptr< ForMerge > pSort( new ForSort(nTag, rOrder) ); maMarkStack.push( pSort ); maCachedOutputStream.setOutput( pSort ); } else { std::shared_ptr< ForMerge > pMerge( new ForMerge(nTag) ); maMarkStack.push( pMerge ); maCachedOutputStream.setOutput( pMerge ); } mbMarkStackEmpty = false; } #ifdef DBG_UTIL static void lcl_DebugMergeAppend( std::deque & rLeftEndedElements, std::deque & rLeftStartedElements, std::deque & rRightEndedElements, std::deque & rRightStartedElements) { while (!rRightEndedElements.empty()) { if (rLeftStartedElements.empty()) { rLeftEndedElements.push_back(rRightEndedElements.front()); } else { assert(rLeftStartedElements.back() == rRightEndedElements.front()); rLeftStartedElements.pop_back(); } rRightEndedElements.pop_front(); } while (!rRightStartedElements.empty()) { rLeftStartedElements.push_back(rRightStartedElements.front()); rRightStartedElements.pop_front(); } } static void lcl_DebugMergePrepend( std::deque & rLeftEndedElements, std::deque & rLeftStartedElements, std::deque & rRightEndedElements, std::deque & rRightStartedElements) { while (!rLeftStartedElements.empty()) { if (rRightEndedElements.empty()) { rRightStartedElements.push_front(rLeftStartedElements.back()); } else { assert(rRightEndedElements.front() == rLeftStartedElements.back()); rRightEndedElements.pop_front(); } rLeftStartedElements.pop_back(); } while (!rLeftEndedElements.empty()) { rRightEndedElements.push_front(rLeftEndedElements.back()); rLeftEndedElements.pop_back(); } } #endif void FastSaxSerializer::mergeTopMarks( sal_Int32 const nTag, sax_fastparser::MergeMarks const eMergeType) { SAL_WARN_IF(mbMarkStackEmpty, "sax", "Empty mark stack - nothing to merge"); assert(!mbMarkStackEmpty); // should never happen if ( mbMarkStackEmpty ) return; assert(maMarkStack.top()->m_Tag == nTag && "mark/merge tag mismatch!"); (void) nTag; #ifdef DBG_UTIL if (dynamic_cast(maMarkStack.top().get())) { // Sort is always well-formed fragment assert(maMarkStack.top()->m_DebugStartedElements.empty()); assert(maMarkStack.top()->m_DebugEndedElements.empty()); } lcl_DebugMergeAppend( maMarkStack.top()->m_DebugEndedElements, maMarkStack.top()->m_DebugStartedElements, maMarkStack.top()->m_DebugPostponedEndedElements, maMarkStack.top()->m_DebugPostponedStartedElements); #endif // flush, so that we get everything in getData() maCachedOutputStream.flush(); if (maMarkStack.size() == 1) { #ifdef DBG_UTIL while (!maMarkStack.top()->m_DebugEndedElements.empty()) { assert(maMarkStack.top()->m_DebugEndedElements.front() == m_DebugStartedElements.top()); maMarkStack.top()->m_DebugEndedElements.pop_front(); m_DebugStartedElements.pop(); } while (!maMarkStack.top()->m_DebugStartedElements.empty()) { m_DebugStartedElements.push(maMarkStack.top()->m_DebugStartedElements.front()); maMarkStack.top()->m_DebugStartedElements.pop_front(); } #endif Sequence aSeq( maMarkStack.top()->getData() ); maMarkStack.pop(); mbMarkStackEmpty = true; maCachedOutputStream.resetOutputToStream(); maCachedOutputStream.writeBytes( aSeq.getConstArray(), aSeq.getLength() ); return; } #ifdef DBG_UTIL ::std::deque topDebugStartedElements(maMarkStack.top()->m_DebugStartedElements); ::std::deque topDebugEndedElements(maMarkStack.top()->m_DebugEndedElements); #endif const Int8Sequence aMerge( maMarkStack.top()->getData() ); maMarkStack.pop(); #ifdef DBG_UTIL switch (eMergeType) { case MergeMarks::APPEND: lcl_DebugMergeAppend( maMarkStack.top()->m_DebugEndedElements, maMarkStack.top()->m_DebugStartedElements, topDebugEndedElements, topDebugStartedElements); break; case MergeMarks::PREPEND: if (dynamic_cast(maMarkStack.top().get())) // argh... { lcl_DebugMergeAppend( maMarkStack.top()->m_DebugEndedElements, maMarkStack.top()->m_DebugStartedElements, topDebugEndedElements, topDebugStartedElements); } else { lcl_DebugMergePrepend( topDebugEndedElements, topDebugStartedElements, maMarkStack.top()->m_DebugEndedElements, maMarkStack.top()->m_DebugStartedElements); } break; case MergeMarks::POSTPONE: lcl_DebugMergeAppend( maMarkStack.top()->m_DebugPostponedEndedElements, maMarkStack.top()->m_DebugPostponedStartedElements, topDebugEndedElements, topDebugStartedElements); break; } #endif if (maMarkStack.empty()) { mbMarkStackEmpty = true; maCachedOutputStream.resetOutputToStream(); } else { maCachedOutputStream.setOutput( maMarkStack.top() ); } switch ( eMergeType ) { case MergeMarks::APPEND: maMarkStack.top()->append( aMerge ); break; case MergeMarks::PREPEND: maMarkStack.top()->prepend( aMerge ); break; case MergeMarks::POSTPONE: maMarkStack.top()->postpone( aMerge ); break; } } void FastSaxSerializer::writeBytes( const Sequence< sal_Int8 >& rData ) { maCachedOutputStream.writeBytes( rData.getConstArray(), rData.getLength() ); } void FastSaxSerializer::writeBytes( const char* pStr, size_t nLen ) { #if OSL_DEBUG_LEVEL > 0 { bool bGood = true; for (size_t i=0; i < nLen; ++i) { if (invalidChar(pStr[i])) { bGood = false; SAL_WARN("sax", "FastSaxSerializer::writeBytes - illegal XML character 0x" << std::hex << int(static_cast(pStr[i]))); } } SAL_WARN_IF( !bGood && nLen > 1, "sax", "in '" << OString(pStr,std::min(nLen,42)) << "'"); } #endif maCachedOutputStream.writeBytes( reinterpret_cast(pStr), nLen ); } FastSaxSerializer::Int8Sequence& FastSaxSerializer::ForMerge::getData() { merge( maData, maPostponed, true ); maPostponed.realloc( 0 ); return maData; } #if OSL_DEBUG_LEVEL > 0 void FastSaxSerializer::ForMerge::print( ) { std::cerr << "Data: "; for ( sal_Int32 i=0, len=maData.getLength(); i < len; i++ ) { std::cerr << maData[i]; } std::cerr << "\nPostponed: "; for ( sal_Int32 i=0, len=maPostponed.getLength(); i < len; i++ ) { std::cerr << maPostponed[i]; } std::cerr << "\n"; } #endif void FastSaxSerializer::ForMerge::prepend( const Int8Sequence &rWhat ) { merge( maData, rWhat, false ); } void FastSaxSerializer::ForMerge::append( const css::uno::Sequence &rWhat ) { merge( maData, rWhat, true ); } void FastSaxSerializer::ForMerge::postpone( const Int8Sequence &rWhat ) { merge( maPostponed, rWhat, true ); } void FastSaxSerializer::ForMerge::merge( Int8Sequence &rTop, const Int8Sequence &rMerge, bool bAppend ) { sal_Int32 nMergeLen = rMerge.getLength(); if ( nMergeLen > 0 ) { sal_Int32 nTopLen = rTop.getLength(); rTop.realloc( nTopLen + nMergeLen ); if ( bAppend ) { // append the rMerge to the rTop memcpy( rTop.getArray() + nTopLen, rMerge.getConstArray(), nMergeLen ); } else { // prepend the rMerge to the rTop memmove( rTop.getArray() + nMergeLen, rTop.getConstArray(), nTopLen ); memcpy( rTop.getArray(), rMerge.getConstArray(), nMergeLen ); } } } void FastSaxSerializer::ForMerge::resetData( ) { maData = Int8Sequence(); } void FastSaxSerializer::ForSort::setCurrentElement( sal_Int32 nElement ) { vector< sal_Int32 > aOrder( comphelper::sequenceToContainer >(maOrder) ); if( std::find( aOrder.begin(), aOrder.end(), nElement ) != aOrder.end() ) { mnCurrentElement = nElement; if ( maData.find( nElement ) == maData.end() ) maData[ nElement ] = Int8Sequence(); } } void FastSaxSerializer::ForSort::prepend( const Int8Sequence &rWhat ) { append( rWhat ); } void FastSaxSerializer::ForSort::append( const css::uno::Sequence &rWhat ) { merge( maData[mnCurrentElement], rWhat, true ); } void FastSaxSerializer::ForSort::sort() { // Clear the ForMerge data to avoid duplicate items resetData(); // Sort it all std::map< sal_Int32, Int8Sequence >::iterator iter; for ( const auto nIndex : std::as_const(maOrder) ) { iter = maData.find( nIndex ); if ( iter != maData.end() ) ForMerge::append( iter->second ); } } FastSaxSerializer::Int8Sequence& FastSaxSerializer::ForSort::getData() { sort( ); return ForMerge::getData(); } #if OSL_DEBUG_LEVEL > 0 void FastSaxSerializer::ForSort::print( ) { for ( const auto& [rElement, rData] : maData ) { std::cerr << "pair: " << rElement; for ( sal_Int32 i=0, len=rData.getLength(); i < len; ++i ) std::cerr << rData[i]; std::cerr << "\n"; } sort( ); ForMerge::print(); } #endif } // namespace sax_fastparser /* vim:set shiftwidth=4 softtabstop=4 expandtab: */