/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * Copyright (C) 2012 Tino Kluge * */ #include #include #include #include #include #include #include "black_scholes.hxx" // options prices and greeks in the Black-Scholes model // also known as TV (theoretical value) // the code is structured as follows: // (1) basic assets // - cash-or-nothing option: bincash() // - asset-or-nothing option: binasset() // (2) derived basic assets, can all be priced based on (1) // - vanilla put/call: putcall() = +/- ( binasset() - K*bincash() ) // - truncated put/call (barriers active at maturity only) // (3) write a wrapper function to include all vanilla prices // - this is so we don't duplicate code when pricing barriers // as this is derived from vanillas // (4) single barrier options (knock-out), priced based on truncated vanillas // - it follows from the reflection principle that the price W(S) of a // single barrier option is given by // W(S) = V(S) - (B/S)^a V(B^2/S), a = 2(rd-rf)/vol^2 - 1 // where V(S) is the price of the corresponding truncated vanilla // option // - to reduce code duplication and in anticipation of double barrier // options we write the following function // barrier_term(S,c) = V(c*S) - (B/S)^a V(c*B^2/S) // (5) double barrier options (knock-out) // - value is an infinite sum over option prices of the corresponding // truncated vanillas (truncated at both barriers): // W(S)=sum (B2/B1)^(i*a) (V(S(B2/B1)^(2i)) - (B1/S)^a V(B1^2/S (B2/B1)^(2i)) // (6) write routines for put/call barriers and touch options which // mainly call the general double barrier pricer // the main routines are touch() and barrier() // both can price in/out barriers, double/single barriers as well as // vanillas // the framework allows any barriers to be priced as long as we define // the value/greek functions for the corresponding truncated vanilla // and wrap them into internal::vanilla() and internal::vanilla_trunc() // disadvantage of that approach is that due to the rules of // differentiations the formulas for greeks become long and possible // simplifications in the formulas won't be made // other code inefficiency due to multiplication with pm (+/- 1) // cvtsi2sd: int-->double, 6/3 cycles // mulsd: double-double multiplication, 5/1 cycles // with -O3, however, it compiles 2 versions with pm=1, and pm=-1 // which are efficient // note this is tiny anyway as compared to exp/log (100 cycles), // pow (200 cycles), erf (70 cycles) // this code is not tested for numerical instability, ie overruns, // underruns, accuracy, etc namespace sca::pricing::bs { // helper functions static double sqr(double x) { return x*x; } // normal density (see also ScInterpreter::phi) static double dnorm(double x) { //return (1.0/sqrt(2.0*M_PI))*exp(-0.5*x*x); // windows may not have M_PI return 0.39894228040143268*exp(-0.5*x*x); } // cumulative normal distribution (see also ScInterpreter::integralPhi) static double pnorm(double x) { return 0.5 * std::erfc(-x * M_SQRT1_2); } // binary option cash (domestic) // call - pays 1 if S_T is above strike K // put - pays 1 if S_T is below strike K double bincash(double S, double vol, double rd, double rf, double tau, double K, types::PutCall pc, types::Greeks greeks) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); double val=0.0; if(tau<=0.0) { // special case tau=0 (expiry) switch(greeks) { case types::Value: if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) { val = 1.0; } else { val = 0.0; } break; default: val = 0.0; } } else if(K==0.0) { // special case with zero strike if(pc==types::Put) { // up-and-out (put) with K=0 val=0.0; } else { // down-and-out (call) with K=0 (zero coupon bond) switch(greeks) { case types::Value: val = 1.0; break; case types::Theta: val = rd; break; case types::Rho_d: val = -tau; break; default: val = 0.0; } } } else { // standard case with K>0, tau>0 double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau)); double d2 = d1 - vol*sqrt(tau); int pm = (pc==types::Call) ? 1 : -1; switch(greeks) { case types::Value: val = pnorm(pm*d2); break; case types::Delta: val = pm*dnorm(d2)/(S*vol*sqrt(tau)); break; case types::Gamma: val = -pm*dnorm(d2)*d1/(sqr(S*vol)*tau); break; case types::Theta: val = rd*pnorm(pm*d2) + pm*dnorm(d2)*(log(S/K)/(vol*sqrt(tau))-0.5*d2)/tau; break; case types::Vega: val = -pm*dnorm(d2)*d1/vol; break; case types::Volga: val = pm*dnorm(d2)/(vol*vol)*(-d1*d1*d2+d1+d2); break; case types::Vanna: val = pm*dnorm(d2)/(S*vol*vol*sqrt(tau))*(d1*d2-1.0); break; case types::Rho_d: val = -tau*pnorm(pm*d2) + pm*dnorm(d2)*sqrt(tau)/vol; break; case types::Rho_f: val = -pm*dnorm(d2)*sqrt(tau)/vol; break; default: printf("bincash: greek %d not implemented\n", greeks ); abort(); } } return exp(-rd*tau)*val; } // binary option asset (foreign) // call - pays S_T if S_T is above strike K // put - pays S_T if S_T is below strike K double binasset(double S, double vol, double rd, double rf, double tau, double K, types::PutCall pc, types::Greeks greeks) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); double val=0.0; if(tau<=0.0) { // special case tau=0 (expiry) switch(greeks) { case types::Value: if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) { val = S; } else { val = 0.0; } break; case types::Delta: if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) { val = 1.0; } else { val = 0.0; } break; default: val = 0.0; } } else if(K==0.0) { // special case with zero strike (forward with zero strike) if(pc==types::Put) { // up-and-out (put) with K=0 val = 0.0; } else { // down-and-out (call) with K=0 (type of forward) switch(greeks) { case types::Value: val = S; break; case types::Delta: val = 1.0; break; case types::Theta: val = rf*S; break; case types::Rho_f: val = -tau*S; break; default: val = 0.0; } } } else { // normal case double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau)); double d2 = d1 - vol*sqrt(tau); int pm = (pc==types::Call) ? 1 : -1; switch(greeks) { case types::Value: val = S*pnorm(pm*d1); break; case types::Delta: val = pnorm(pm*d1) + pm*dnorm(d1)/(vol*sqrt(tau)); break; case types::Gamma: val = -pm*dnorm(d1)*d2/(S*sqr(vol)*tau); break; case types::Theta: val = rf*S*pnorm(pm*d1) + pm*S*dnorm(d1)*(log(S/K)/(vol*sqrt(tau))-0.5*d1)/tau; break; case types::Vega: val = -pm*S*dnorm(d1)*d2/vol; break; case types::Volga: val = pm*S*dnorm(d1)/(vol*vol)*(-d1*d2*d2+d1+d2); break; case types::Vanna: val = pm*dnorm(d1)/(vol*vol*sqrt(tau))*(d2*d2-1.0); break; case types::Rho_d: val = pm*S*dnorm(d1)*sqrt(tau)/vol; break; case types::Rho_f: val = -tau*S*pnorm(pm*d1) - pm*S*dnorm(d1)*sqrt(tau)/vol; break; default: printf("binasset: greek %d not implemented\n", greeks ); abort(); } } return exp(-rf*tau)*val; } // just for convenience we can combine bincash and binasset into // one function binary // using bincash() if fd==types::Domestic // using binasset() if fd==types::Foreign static double binary(double S, double vol, double rd, double rf, double tau, double K, types::PutCall pc, types::ForDom fd, types::Greeks greek) { double val=0.0; switch(fd) { case types::Domestic: val = bincash(S,vol,rd,rf,tau,K,pc,greek); break; case types::Foreign: val = binasset(S,vol,rd,rf,tau,K,pc,greek); break; default: // never get here assert(false); } return val; } // further wrapper to combine single/double barrier binary options // into one function // B1<=0 - it is assumed lower barrier not set // B2<=0 - it is assumed upper barrier not set static double binary(double S, double vol, double rd, double rf, double tau, double B1, double B2, types::ForDom fd, types::Greeks greek) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); double val=0.0; if(B1<=0.0 && B2<=0.0) { // no barriers set, payoff 1.0 (domestic) or S_T (foreign) val = binary(S,vol,rd,rf,tau,0.0,types::Call,fd,greek); } else if(B1<=0.0 && B2>0.0) { // upper barrier (put) val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek); } else if(B1>0.0 && B2<=0.0) { // lower barrier (call) val = binary(S,vol,rd,rf,tau,B1,types::Call,fd,greek); } else if(B1>0.0 && B2>0.0) { // double barrier if(B2<=B1) { val = 0.0; } else { val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek) - binary(S,vol,rd,rf,tau,B1,types::Put,fd,greek); } } else { // never get here assert(false); } return val; } // vanilla put/call option // call pays (S_T-K)^+ // put pays (K-S_T)^+ // this is the same as: +/- (binasset - K*bincash) double putcall(double S, double vol, double rd, double rf, double tau, double K, types::PutCall putcall, types::Greeks greeks) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); double val = 0.0; int pm = (putcall==types::Call) ? 1 : -1; if(K==0 || tau==0.0) { // special cases, simply refer to binasset() and bincash() val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks) - K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) ); } else { // general case // we could just use pm*(binasset-K*bincash), however // since the formula for delta and gamma simplify we write them // down here double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau)); double d2 = d1 - vol*sqrt(tau); switch(greeks) { case types::Value: val = pm * ( exp(-rf*tau)*S*pnorm(pm*d1)-exp(-rd*tau)*K*pnorm(pm*d2) ); break; case types::Delta: val = pm*exp(-rf*tau)*pnorm(pm*d1); break; case types::Gamma: val = exp(-rf*tau)*dnorm(d1)/(S*vol*sqrt(tau)); break; default: // too lazy for the other greeks, so simply refer to binasset/bincash val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks) - K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) ); } } return val; } // truncated put/call option, single barrier // need to specify whether it's down-and-out or up-and-out // regular (keeps monotonicity): down-and-out for call, up-and-out for put // reverse (destroys monoton): up-and-out for call, down-and-out for put // call pays (S_T-K)^+ // put pays (K-S_T)^+ double putcalltrunc(double S, double vol, double rd, double rf, double tau, double K, double B, types::PutCall pc, types::KOType kotype, types::Greeks greeks) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); assert(B>=0.0); int pm = (pc==types::Call) ? 1 : -1; double val = 0.0; switch(kotype) { case types::Regular: if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) { // option degenerates to standard plain vanilla call/put val = putcall(S,vol,rd,rf,tau,K,pc,greeks); } else { // normal case with truncation val = pm * ( binasset(S,vol,rd,rf,tau,B,pc,greeks) - K*bincash(S,vol,rd,rf,tau,B,pc,greeks) ); } break; case types::Reverse: if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) { // option degenerates to zero payoff val = 0.0; } else { // normal case with truncation val = binasset(S,vol,rd,rf,tau,K,types::Call,greeks) - binasset(S,vol,rd,rf,tau,B,types::Call,greeks) - K * ( bincash(S,vol,rd,rf,tau,K,types::Call,greeks) - bincash(S,vol,rd,rf,tau,B,types::Call,greeks) ); } break; default: assert(false); } return val; } // wrapper function for put/call option which combines // double/single/no truncation barrier // B1<=0 - assume no lower barrier // B2<=0 - assume no upper barrier double putcalltrunc(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::Greeks greek) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); double val=0.0; if(B1<=0.0 && B2<=0.0) { // no barriers set, plain vanilla val = putcall(S,vol,rd,rf,tau,K,pc,greek); } else if(B1<=0.0 && B2>0.0) { // upper barrier: reverse barrier for call, regular barrier for put if(pc==types::Call) { val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Reverse,greek); } else { val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek); } } else if(B1>0.0 && B2<=0.0) { // lower barrier: regular barrier for call, reverse barrier for put if(pc==types::Call) { val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek); } else { val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Reverse,greek); } } else if(B1>0.0 && B2>0.0) { // double barrier if(B2<=B1) { val = 0.0; } else { int pm = (pc==types::Call) ? 1 : -1; val = pm * ( putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek) - putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek) ); } } else { // never get here assert(false); } return val; } namespace internal { // wrapper function for all non-path dependent options // this is only an internal function, used to avoid code duplication when // going to path-dependent barrier options, // K<0 - assume binary option // K>=0 - assume put/call option static double vanilla(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::ForDom fd, types::Greeks greek) { double val = 0.0; if(K<0.0) { // binary option if K<0 val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek); } else { val = putcall(S,vol,rd,rf,tau,K,pc,greek); } return val; } static double vanilla_trunc(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::ForDom fd, types::Greeks greek) { double val = 0.0; if(K<0.0) { // binary option if K<0 // truncated is actually the same as the vanilla binary val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek); } else { val = putcalltrunc(S,vol,rd,rf,tau,K,B1,B2,pc,greek); } return val; } } // namespace internal // path dependent options namespace internal { // helper term for any type of options with continuously monitored barriers, // internal, should not be called from outside // calculates value and greeks based on // V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S) // (a=2 mu/vol^2, mu drift in logspace, ie. mu=(rd-rf-1/2vol^2)) // with sc=1 and V1() being the price of the respective truncated // vanilla option, V() would be the price of the respective barrier // option if only one barrier is present static double barrier_term(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, double sc, types::PutCall pc, types::ForDom fd, types::Greeks greek) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); // V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S) double val = 0.0; double B = (B1>0.0) ? B1 : B2; double a = 2.0*(rd-rf)/(vol*vol)-1.0; // helper variable double b = 4.0*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol double c = 12.0*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol switch(greek) { case types::Value: case types::Theta: val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); break; case types::Delta: val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) + pow(B/S,a) * ( a/S* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + sqr(B/S)*sc* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) ); break; case types::Gamma: val = sc*sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( a*(a+1.0)/(S*S)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + (2.0*a+2.0)*B*B/(S*S*S)*sc* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta) + sqr(sqr(B/S))*sc*sc* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Gamma) ); break; case types::Vega: val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( - b*log(B/S)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + 1.0* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) ); break; case types::Volga: val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( log(B/S)*(b*b*log(B/S)+c)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) - 2.0*b*log(B/S)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega) + 1.0* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Volga) ); break; case types::Vanna: val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( b/S*(log(B/S)*a+1.0)* vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + b*log(B/S)*sqr(B/S)*sc* vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta) - a/S* vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega) - sqr(B/S)*sc* vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vanna) ); break; case types::Rho_d: val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( 2.0*log(B/S)/(vol*vol)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + 1.0* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) ); break; case types::Rho_f: val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - pow(B/S,a) * ( - 2.0*log(B/S)/(vol*vol)* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value) + 1.0* vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) ); break; default: printf("barrier_term: greek %d not implemented\n", greek ); abort(); } return val; } // one term of the infinite sum for the valuation of double barriers static double barrier_double_term( double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, double fac, double sc, int i, types::PutCall pc, types::ForDom fd, types::Greeks greek) { double val = 0.0; double b = 4.0*i*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol double c = 12.0*i*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol switch(greek) { case types::Value: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek); break; case types::Delta: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek); break; case types::Gamma: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek); break; case types::Theta: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek); break; case types::Vega: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek) - b*log(B2/B1)*fac * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value); break; case types::Volga: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek) - 2.0*b*log(B2/B1)*fac * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Vega) + log(B2/B1)*fac*(c+b*b*log(B2/B1)) * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value); break; case types::Vanna: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek) - b*log(B2/B1)*fac * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Delta); break; case types::Rho_d: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek) + 2.0*i/(vol*vol)*log(B2/B1)*fac * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value); break; case types::Rho_f: val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek) - 2.0*i/(vol*vol)*log(B2/B1)*fac * barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value); break; default: printf("barrier_double_term: greek %d not implemented\n", greek ); abort(); } return val; } // general pricer for any type of options with continuously monitored barriers // allows two, one or zero barriers, only knock-out style // payoff profiles allowed based on vanilla_trunc() static double barrier_ko(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::ForDom fd, types::Greeks greek) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); double val = 0.0; if(B1<=0.0 && B2<=0.0) { // no barriers --> vanilla case val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if(B1>0.0 && B2<=0.0) { // lower barrier if(S<=B1) { val = 0.0; // knocked out } else { val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek); } } else if(B1<=0.0 && B2>0.0) { // upper barrier if(S>=B2) { val = 0.0; // knocked out } else { val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek); } } else if(B1>0.0 && B2>0.0) { // double barrier if(S<=B1 || S>=B2) { val = 0.0; // knocked out (always true if wrong input B1>B2) } else { // more complex calculation as we have to evaluate an infinite // sum // to reduce very costly pow() calls we define some variables double a = 2.0*(rd-rf)/(vol*vol)-1.0; // 2 (mu-1/2vol^2)/sigma^2 double BB2=sqr(B2/B1); double BBa=pow(B2/B1,a); double BB2inv=1.0/BB2; double BBainv=1.0/BBa; double fac=1.0; double facinv=1.0; double sc=1.0; double scinv=1.0; // initial term i=0 val=barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,0,pc,fd,greek); // infinite loop, 10 should be plenty, normal would be 2 for(int i=1; i<10; i++) { fac*=BBa; facinv*=BBainv; sc*=BB2; scinv*=BB2inv; double add = barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,i,pc,fd,greek) + barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,facinv,scinv,-i,pc,fd,greek); val += add; //printf("%i: val=%e (add=%e)\n",i,val,add); if(fabs(add) <= 1e-12*fabs(val)) { break; } } // not knocked-out double barrier end } // double barrier end } else { // no such barrier combination exists assert(false); } return val; } // knock-in style barrier static double barrier_ki(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::ForDom fd, types::Greeks greek) { return vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) -barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } // general barrier static double barrier(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, types::PutCall pc, types::ForDom fd, types::BarrierKIO kio, types::BarrierActive bcont, types::Greeks greek) { double val = 0.0; if( kio==types::KnockOut && bcont==types::Maturity ) { // truncated vanilla option val = vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockOut && bcont==types::Continuous ) { // standard knock-out barrier val = barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockIn && bcont==types::Maturity ) { // inverse truncated vanilla val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek) - vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockIn && bcont==types::Continuous ) { // standard knock-in barrier val = barrier_ki(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else { // never get here assert(false); } return val; } } // namespace internal // touch/no-touch options (cash/asset or nothing payoff profile) double touch(double S, double vol, double rd, double rf, double tau, double B1, double B2, types::ForDom fd, types::BarrierKIO kio, types::BarrierActive bcont, types::Greeks greek) { double K=-1.0; // dummy types::PutCall pc = types::Call; // dummy double val = 0.0; if( kio==types::KnockOut && bcont==types::Maturity ) { // truncated vanilla option val = internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockOut && bcont==types::Continuous ) { // standard knock-out barrier val = internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockIn && bcont==types::Maturity ) { // inverse truncated vanilla val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek) - internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else if ( kio==types::KnockIn && bcont==types::Continuous ) { // standard knock-in barrier val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek) - internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek); } else { // never get here assert(false); } return val; } // barrier option (put/call payoff profile) double barrier(double S, double vol, double rd, double rf, double tau, double K, double B1, double B2, double rebate, types::PutCall pc, types::BarrierKIO kio, types::BarrierActive bcont, types::Greeks greek) { assert(tau>=0.0); assert(S>0.0); assert(vol>0.0); assert(K>=0.0); types::ForDom fd = types::Domestic; double val=internal::barrier(S,vol,rd,rf,tau,K,B1,B2,pc,fd,kio,bcont,greek); if(rebate!=0.0) { // opposite of barrier knock-in/out type types::BarrierKIO kio2 = (kio==types::KnockIn) ? types::KnockOut : types::KnockIn; val += rebate*touch(S,vol,rd,rf,tau,B1,B2,fd,kio2,bcont,greek); } return val; } // probability of hitting a barrier // this is almost the same as the price of a touch option (domestic) // as it pays one if a barrier is hit; we only have to offset the // discounting and we get the probability double prob_hit(double S, double vol, double mu, double tau, double B1, double B2) { double const rd=0.0; double rf=-mu; return 1.0 - touch(S,vol,rd,rf,tau,B1,B2,types::Domestic,types::KnockOut, types::Continuous, types::Value); } // probability of being in-the-money, ie payoff is greater zero, // assuming payoff(S_T) > 0 iff S_T in [B1, B2] // this the same as the price of a cash or nothing option // with no discounting double prob_in_money(double S, double vol, double mu, double tau, double B1, double B2) { assert(S>0.0); assert(vol>0.0); assert(tau>=0.0); double val = 0.0; if( B10.0); assert(vol>0.0); assert(tau>=0.0); // if K<0 we assume a binary option is given if(K<0.0) { return prob_in_money(S,vol,mu,tau,B1,B2); } double val = 0.0; double BM1, BM2; // range of in the money [BM1, BM2] // non-sense parameters with no positive payoff if( (B1>B2 && B1>0.0 && B2>0.0) || (K>=B2 && B2>0.0 && pc==types::Call) || (K<=B1 && pc==types::Put) ) { val = 0.0; // need to figure out between what barriers payoff is greater 0 } else if(pc==types::Call) { BM1=std::max(B1, K); BM2=B2; val = prob_in_money(S,vol,mu,tau,BM1,BM2); } else if (pc==types::Put) { BM1=B1; BM2= (B2>0.0) ? std::min(B2,K) : K; val = prob_in_money(S,vol,mu,tau,BM1,BM2); } else { // don't get here assert(false); } return val; } } // namespace sca /* vim:set shiftwidth=4 softtabstop=4 expandtab: */