/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_slideshow.hxx" // must be first #include #include #include #include #include namespace slideshow { namespace internal { // TODO(P1): Elide some virtual function calls, by templifying this // static hierarchy ActivityBase::ActivityBase( const ActivityParameters& rParms ) : mpEndEvent( rParms.mrEndEvent ), mrEventQueue( rParms.mrEventQueue ), mpShape(), mpAttributeLayer(), maRepeats( rParms.mrRepeats ), mnAccelerationFraction( rParms.mnAccelerationFraction ), mnDecelerationFraction( rParms.mnDecelerationFraction ), mbAutoReverse( rParms.mbAutoReverse ), mbFirstPerformCall( true ), mbIsActive( true ) {} void ActivityBase::dispose() { // deactivate mbIsActive = false; // dispose event if( mpEndEvent ) mpEndEvent->dispose(); // release references mpEndEvent.reset(); mpShape.reset(); mpAttributeLayer.reset(); } double ActivityBase::calcTimeLag() const { // TODO(Q1): implement different init process! if (isActive() && mbFirstPerformCall) { mbFirstPerformCall = false; // notify derived classes that we're // starting now const_cast(this)->startAnimation(); } return 0.0; } bool ActivityBase::perform() { // still active? if( !isActive() ) return false; // no, early exit. OSL_ASSERT( ! mbFirstPerformCall ); return true; } bool ActivityBase::isActive() const { return mbIsActive; } void ActivityBase::setTargets( const AnimatableShapeSharedPtr& rShape, const ShapeAttributeLayerSharedPtr& rAttrLayer ) { ENSURE_OR_THROW( rShape, "ActivityBase::setTargets(): Invalid shape" ); ENSURE_OR_THROW( rAttrLayer, "ActivityBase::setTargets(): Invalid attribute layer" ); mpShape = rShape; mpAttributeLayer = rAttrLayer; } void ActivityBase::endActivity() { // this is a regular activity end mbIsActive = false; // Activity is ending, queue event, then if( mpEndEvent ) mrEventQueue.addEvent( mpEndEvent ); // release references mpEndEvent.reset(); } void ActivityBase::dequeued() { // xxx todo: // // ignored here, if we're still active. Discrete // // activities are dequeued after every perform() call, // // thus, the call is only significant when isActive() == // // false. if( !isActive() ) endAnimation(); } void ActivityBase::end() { if (!isActive() || isDisposed()) return; // assure animation is started: if (mbFirstPerformCall) { mbFirstPerformCall = false; // notify derived classes that we're starting now this->startAnimation(); } performEnd(); // calling private virtual endAnimation(); endActivity(); } double ActivityBase::calcAcceleratedTime( double nT ) const { // Handle acceleration/deceleration // ================================ // clamp nT to permissible [0,1] range nT = ::canvas::tools::clamp( nT, 0.0, 1.0 ); // take acceleration/deceleration into account. if the sum // of mnAccelerationFraction and mnDecelerationFraction // exceeds 1.0, ignore both (that's according to SMIL spec) if( (mnAccelerationFraction > 0.0 || mnDecelerationFraction > 0.0) && mnAccelerationFraction + mnDecelerationFraction <= 1.0 ) { /* // calc accelerated/decelerated time. // // We have three intervals: // 1 [0,a] // 2 [a,d] // 3 [d,1] (with a and d being acceleration/deceleration // fraction, resp.) // // The change rate during interval 1 is constantly // increasing, reaching 1 at a. It then stays at 1, // starting a linear decrease at d, ending with 0 at // time 1. The integral of this function is the // required new time nT'. // // As we arbitrarily assumed 1 as the upper value of // the change rate, the integral must be normalized to // reach nT'=1 at the end of the interval. This // normalization constant is: // // c = 1 - 0.5a - 0.5d // // The integral itself then amounts to: // // 0.5 nT^2 / a + (nT-a) + (nT - 0.5 nT^2 / d) // // (where each of the three summands correspond to the // three intervals above, and are applied only if nT // has reached the corresponding interval) // // The graph of the change rate is a trapezoid: // // | // 1| /--------------\ // | / \ // | / \ // | / \ // ----------------------------- // 0 a d 1 // //*/ const double nC( 1.0 - 0.5*mnAccelerationFraction - 0.5*mnDecelerationFraction ); // this variable accumulates the new time value double nTPrime(0.0); if( nT < mnAccelerationFraction ) { nTPrime += 0.5*nT*nT/mnAccelerationFraction; // partial first interval } else { nTPrime += 0.5*mnAccelerationFraction; // full first interval if( nT <= 1.0-mnDecelerationFraction ) { nTPrime += nT-mnAccelerationFraction; // partial second interval } else { nTPrime += 1.0 - mnAccelerationFraction - mnDecelerationFraction; // full second interval const double nTRelative( nT - 1.0 + mnDecelerationFraction ); nTPrime += nTRelative - 0.5*nTRelative*nTRelative / mnDecelerationFraction; } } // normalize, and assign to work variable nT = nTPrime / nC; } return nT; } } }