/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include "drawshapesubsetting.hxx" #include "drawshape.hxx" #include #include #include using namespace ::com::sun::star; namespace slideshow { namespace internal { // Private methods void DrawShapeSubsetting::ensureInitializedNodeTree() const { ENSURE_OR_THROW( mpMtf, "DrawShapeSubsetting::ensureInitializedNodeTree(): Invalid mtf" ); if( mbNodeTreeInitialized ) return; // done, already initialized. // init doctree vector maActionClassVector.clear(); maActionClassVector.reserve( mpMtf->GetActionSize() ); // search metafile for text output MetaAction* pCurrAct; sal_Int32 nActionIndex(0); sal_Int32 nLastTextActionIndex(0); for( pCurrAct = mpMtf->FirstAction(); pCurrAct; pCurrAct = mpMtf->NextAction() ) { // check for one of our special text doctree comments switch( pCurrAct->GetType() ) { case MetaActionType::COMMENT: { MetaCommentAction* pAct = static_cast(pCurrAct); // skip comment if not a special XTEXT... comment if( pAct->GetComment().matchIgnoreAsciiCase( OString("XTEXT") ) ) { // fill classification vector with NOOPs, // then insert corresponding classes at // the given index maActionClassVector.resize( nActionIndex+1, CLASS_NOOP ); if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_EOC") ) { // special, because can happen // in-between of portions - set // character-end classificator at // given index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_CHARACTER_CELL_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_EOW") ) { // special, because can happen // in-between of portions - set // word-end classificator at given // index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_WORD_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_EOS") ) { // special, because can happen // in-between of portions - set // sentence-end classificator at given // index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_SENTENCE_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_EOL") ) { maActionClassVector[ nActionIndex ] = CLASS_LINE_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_EOP") ) { maActionClassVector[ nActionIndex ] = CLASS_PARAGRAPH_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_PAINTSHAPE_END") ) { maActionClassVector[ nActionIndex ] = CLASS_SHAPE_END; } else if( pAct->GetComment().equalsIgnoreAsciiCase("XTEXT_PAINTSHAPE_BEGIN") ) { maActionClassVector[ nActionIndex ] = CLASS_SHAPE_START; } } SAL_INFO( "slideshow", "Shape text structure: " << pAct->GetComment() << " at action #" << nActionIndex); ++nActionIndex; break; } case MetaActionType::TEXT: case MetaActionType::TEXTARRAY: case MetaActionType::STRETCHTEXT: nLastTextActionIndex = nActionIndex; SAL_INFO("slideshow.verbose", "Shape text \"" << (static_cast(pCurrAct))->GetText() << "\" at action #" << nActionIndex ); SAL_FALLTHROUGH; default: // comment action and all actions not // explicitly handled here: nActionIndex += getNextActionOffset(pCurrAct); break; } } mbNodeTreeInitialized = true; } void DrawShapeSubsetting::excludeSubset(sal_Int32 nExcludedStart, sal_Int32 nExcludedEnd) { // If current subsets are empty, fill it with initial range initCurrentSubsets(); if (maCurrentSubsets.empty()) { // Non-subsetting mode (not a subset of anything; child subsets subtract content) maCurrentSubsets.emplace_back(0, maActionClassVector.size()); } slideshow::internal::VectorOfDocTreeNodes aNodesToAppend; for (auto i = maCurrentSubsets.begin(); i != maCurrentSubsets.end();) { if (i->getStartIndex() < nExcludedStart) { if (i->getEndIndex() > nExcludedStart) { // Some overlap -> append new node (if required), and correct this node's end if (i->getEndIndex() > nExcludedEnd) { aNodesToAppend.emplace_back(nExcludedEnd, i->getEndIndex()); } i->setEndIndex(nExcludedStart); } ++i; } else if (i->getStartIndex() < nExcludedEnd) { if (i->getEndIndex() > nExcludedEnd) { // Partial overlap; change the node's start i->setStartIndex(nExcludedEnd); ++i; } else { // Node is fully inside the removed range: erase it i = maCurrentSubsets.erase(i); } } else { // Node is fully outside (after) excluded range ++i; } } maCurrentSubsets.insert(maCurrentSubsets.end(), aNodesToAppend.begin(), aNodesToAppend.end()); // Excluding subsets must not leave an absolutely empty maCurrentSubsets, because it // would mean "non-subsetting" mode unconditionally, with whole object added to subsets. // So to indicate a subset with all parts excluded, add two empty subsets (starting and // ending). if (maCurrentSubsets.empty()) { if (maSubset.isEmpty()) { maCurrentSubsets.emplace_back(0, 0); maCurrentSubsets.emplace_back(maActionClassVector.size(), maActionClassVector.size()); } else { maCurrentSubsets.emplace_back(maSubset.getStartIndex(), maSubset.getStartIndex()); maCurrentSubsets.emplace_back(maSubset.getEndIndex(), maSubset.getEndIndex()); } } } void DrawShapeSubsetting::updateSubsets() { maCurrentSubsets.clear(); initCurrentSubsets(); for (const auto& rSubsetShape : maSubsetShapes) { excludeSubset(rSubsetShape.mnStartActionIndex, rSubsetShape.mnEndActionIndex); } } // Public methods DrawShapeSubsetting::DrawShapeSubsetting() : maActionClassVector(), mpMtf(), maSubset(), maSubsetShapes(), maCurrentSubsets(), mbNodeTreeInitialized( false ) { } DrawShapeSubsetting::DrawShapeSubsetting( const DocTreeNode& rShapeSubset, const GDIMetaFileSharedPtr& rMtf ) : maActionClassVector(), mpMtf( rMtf ), maSubset( rShapeSubset ), maSubsetShapes(), maCurrentSubsets(), mbNodeTreeInitialized( false ) { ENSURE_OR_THROW( mpMtf, "DrawShapeSubsetting::DrawShapeSubsetting(): Invalid metafile" ); initCurrentSubsets(); } void DrawShapeSubsetting::reset() { maActionClassVector.clear(); mpMtf.reset(); maSubset.reset(); maSubsetShapes.clear(); maCurrentSubsets.clear(); mbNodeTreeInitialized = false; } void DrawShapeSubsetting::reset( const ::std::shared_ptr< GDIMetaFile >& rMtf ) { reset(); mpMtf = rMtf; initCurrentSubsets(); } void DrawShapeSubsetting::initCurrentSubsets() { // only add subset to vector, if vector is empty, and subset is not empty - that's // because the vector's content is later literally used // for e.g. painting. if (maCurrentSubsets.empty() && !maSubset.isEmpty()) maCurrentSubsets.push_back( maSubset ); } const DocTreeNode& DrawShapeSubsetting::getSubsetNode() const { return maSubset; } AttributableShapeSharedPtr DrawShapeSubsetting::getSubsetShape( const DocTreeNode& rTreeNode ) const { SAL_INFO( "slideshow", "::presentation::internal::DrawShapeSubsetting::getSubsetShape()" ); // subset shape already created for this DocTreeNode? SubsetEntry aEntry; aEntry.mnStartActionIndex = rTreeNode.getStartIndex(); aEntry.mnEndActionIndex = rTreeNode.getEndIndex(); ShapeSet::const_iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) != maSubsetShapes.end() ) { // already created, return found entry return aIter->mpShape; } return AttributableShapeSharedPtr(); } void DrawShapeSubsetting::addSubsetShape( const AttributableShapeSharedPtr& rShape ) { SAL_INFO( "slideshow", "::presentation::internal::DrawShapeSubsetting::addSubsetShape()" ); // subset shape already created for this DocTreeNode? SubsetEntry aEntry; const DocTreeNode& rEffectiveSubset( rShape->getSubsetNode() ); aEntry.mnStartActionIndex = rEffectiveSubset.getStartIndex(); aEntry.mnEndActionIndex = rEffectiveSubset.getEndIndex(); ShapeSet::const_iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) != maSubsetShapes.end() ) { // already created, increment use count and return // safe cast, since set order does not depend on // mnSubsetQueriedCount const_cast(*aIter).mnSubsetQueriedCount++; } else { // not yet created, init entry aEntry.mnSubsetQueriedCount = 1; aEntry.mpShape = rShape; maSubsetShapes.insert( aEntry ); excludeSubset(aEntry.mnStartActionIndex, aEntry.mnEndActionIndex); } } bool DrawShapeSubsetting::revokeSubsetShape( const AttributableShapeSharedPtr& rShape ) { SAL_INFO( "slideshow", "::presentation::internal::DrawShapeSubsetting::revokeSubsetShape()" ); // lookup subset shape SubsetEntry aEntry; const DocTreeNode& rEffectiveSubset( rShape->getSubsetNode() ); aEntry.mnStartActionIndex = rEffectiveSubset.getStartIndex(); aEntry.mnEndActionIndex = rEffectiveSubset.getEndIndex(); ShapeSet::iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) == maSubsetShapes.end() ) return false; // not found, subset was never queried // last client of the subset revoking? if( aIter->mnSubsetQueriedCount > 1 ) { // no, still clients out there. Just decrement use count // safe cast, since order does not depend on mnSubsetQueriedCount const_cast(*aIter).mnSubsetQueriedCount--; SAL_INFO( "slideshow", "Subset summary: shape " << this << ", " << maSubsetShapes.size() << " open subsets, revoked subset has refcount " << aIter->mnSubsetQueriedCount); return false; // not the last client } SAL_INFO( "slideshow", "Subset summary: shape " << this << ", " << maSubsetShapes.size() << " open subsets, cleared subset has range [" << aEntry.mnStartActionIndex << "," << aEntry.mnEndActionIndex << "]"); // yes, remove from set maSubsetShapes.erase( aIter ); // update currently active subset for _our_ shape (the // part of this shape that is visible, i.e. not displayed // in subset shapes) // TODO(P2): This is quite expensive, when // after every subset effect end, we have to scan // the whole shape set updateSubsets(); return true; } namespace { /** Iterate over all action classification entries in the given range, pass each element range found to the given functor. This method extracts, for each of the different action classifications, the count and the ranges for each of them, and calls the provided functor with that information. @tpl FunctorT This is the functor's operator() calling signature, with eCurrElemClassification denoting the current classification type the functor is called for, nCurrElemCount the running total of elements visited for the given class (starting from 0), and rCurrElemBegin/rCurrElemEnd the range of the current element (i.e. the iterators from the start to the end of this element).
                bool operator()( IndexClassificator                              eCurrElemClassification
                                 sal_Int32                                       nCurrElemCount,
                                 const IndexClassificatorVector::const_iterator& rCurrElemBegin,
                                 const IndexClassificatorVector::const_iterator& rCurrElemEnd );
                
If the functor returns false, iteration over the shapes is immediately stopped. @param io_pFunctor This functor is called for every shape found. @param rBegin Start of range to iterate over @param rEnd End of range to iterate over @return the number of shapes found in the metafile */ template< typename FunctorT > void iterateActionClassifications( FunctorT& io_rFunctor, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd ) { sal_Int32 nCurrShapeCount( 0 ); sal_Int32 nCurrParaCount( 0 ); sal_Int32 nCurrLineCount( 0 ); sal_Int32 nCurrSentenceCount( 0 ); sal_Int32 nCurrWordCount( 0 ); sal_Int32 nCurrCharCount( 0 ); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastShapeStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastParaStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastLineStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastSentenceStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastWordStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastCharStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aNext; DrawShapeSubsetting::IndexClassificatorVector::const_iterator aCurr( rBegin ); while( aCurr != rEnd ) { // aNext will hold an iterator to the next element // (or the past-the-end iterator, if aCurr // references the last element). Used to pass a // valid half-open range to the functors. aNext = aCurr; ++aNext; switch( *aCurr ) { default: ENSURE_OR_THROW( false, "Unexpected type in iterateDocShapes()" ); case DrawShapeSubsetting::CLASS_NOOP: // ignore NOOP actions break; case DrawShapeSubsetting::CLASS_SHAPE_START: // regardless of ending action // classifications before: a new shape // always also starts contained elements // anew aLastShapeStart = aLastParaStart = aLastLineStart = aLastSentenceStart = aLastWordStart = aLastCharStart = aCurr; break; case DrawShapeSubsetting::CLASS_SHAPE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_SHAPE_END, nCurrShapeCount, aLastShapeStart, aNext ) ) { return; } ++nCurrShapeCount; SAL_FALLTHROUGH; // shape end also ends lines case DrawShapeSubsetting::CLASS_PARAGRAPH_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_PARAGRAPH_END, nCurrParaCount, aLastParaStart, aNext ) ) { return; } ++nCurrParaCount; aLastParaStart = aNext; SAL_FALLTHROUGH; // para end also ends line case DrawShapeSubsetting::CLASS_LINE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_LINE_END, nCurrLineCount, aLastLineStart, aNext ) ) { return; } ++nCurrLineCount; aLastLineStart = aNext; if( *aCurr == DrawShapeSubsetting::CLASS_LINE_END ) { // DON'T fall through here, as a line // does NOT end neither a sentence, // nor a word. OTOH, all parent // structures (paragraph and shape), // which itself fall through to this // code, DO end word, sentence and // character cell. // TODO(F1): Maybe a line should end a // character cell, OTOH? break; } SAL_FALLTHROUGH; case DrawShapeSubsetting::CLASS_SENTENCE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_SENTENCE_END, nCurrSentenceCount, aLastSentenceStart, aNext ) ) { return; } ++nCurrSentenceCount; aLastSentenceStart = aNext; SAL_FALLTHROUGH; case DrawShapeSubsetting::CLASS_WORD_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_WORD_END, nCurrWordCount, aLastWordStart, aNext ) ) { return; } ++nCurrWordCount; aLastWordStart = aNext; SAL_FALLTHROUGH; case DrawShapeSubsetting::CLASS_CHARACTER_CELL_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_CHARACTER_CELL_END, nCurrCharCount, aLastCharStart, aNext ) ) { return; } ++nCurrCharCount; aLastCharStart = aNext; break; } aCurr = aNext; } } DrawShapeSubsetting::IndexClassificator mapDocTreeNode( DocTreeNode::NodeType eNodeType ) { switch( eNodeType ) { case DocTreeNode::NodeType::Invalid: // FALLTHROUGH intended default: SAL_WARN( "slideshow", "DrawShapeSubsetting::mapDocTreeNode(): unexpected node type"); return DrawShapeSubsetting::CLASS_NOOP; case DocTreeNode::NodeType::LogicalParagraph: return DrawShapeSubsetting::CLASS_PARAGRAPH_END; case DocTreeNode::NodeType::LogicalWord: return DrawShapeSubsetting::CLASS_WORD_END; case DocTreeNode::NodeType::LogicalCharacterCell: return DrawShapeSubsetting::CLASS_CHARACTER_CELL_END; }; } /// Counts number of class occurrences class CountClassFunctor { public: explicit CountClassFunctor( DrawShapeSubsetting::IndexClassificator eClass ) : meClass( eClass ), mnCurrCount(0) { } bool operator()( DrawShapeSubsetting::IndexClassificator eCurrElemClassification, sal_Int32 /*nCurrElemCount*/, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& /*rCurrElemBegin*/, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& /*rCurrElemEnd*/ ) { if( eCurrElemClassification == meClass ) ++mnCurrCount; return true; // never stop, count all occurrences } sal_Int32 getCount() const { return mnCurrCount; } private: DrawShapeSubsetting::IndexClassificator meClass; sal_Int32 mnCurrCount; }; } sal_Int32 DrawShapeSubsetting::implGetNumberOfTreeNodes( const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd, DocTreeNode::NodeType eNodeType ) { const IndexClassificator eRequestedClass( mapDocTreeNode( eNodeType ) ); // create a counting functor for the requested class of // actions CountClassFunctor aFunctor( eRequestedClass ); // count all occurrences in the given range iterateActionClassifications( aFunctor, rBegin, rEnd ); return aFunctor.getCount(); } sal_Int32 DrawShapeSubsetting::getNumberOfTreeNodes( DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); return implGetNumberOfTreeNodes( maActionClassVector.begin(), maActionClassVector.end(), eNodeType ); } namespace { /** This functor finds the nth occurrence of a given action class. The operator() compares the given index value with the requested index, as given on the functor's constructor. Then, the operator() returns false, denoting that the requested action is found. */ class FindNthElementFunctor { public: FindNthElementFunctor( sal_Int32 nNodeIndex, DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rLastBegin, DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rLastEnd, DrawShapeSubsetting::IndexClassificator eClass ) : mnNodeIndex( nNodeIndex ), mrLastBegin( rLastBegin ), mrLastEnd( rLastEnd ), meClass( eClass ) { } bool operator()( DrawShapeSubsetting::IndexClassificator eCurrElemClassification, sal_Int32 nCurrElemCount, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rCurrElemBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rCurrElemEnd ) { if( eCurrElemClassification == meClass && nCurrElemCount == mnNodeIndex ) { mrLastBegin = rCurrElemBegin; mrLastEnd = rCurrElemEnd; return false; // abort iteration, we've // already found what we've been // looking for } return true; // keep on truckin' } private: sal_Int32 mnNodeIndex; DrawShapeSubsetting::IndexClassificatorVector::const_iterator& mrLastBegin; DrawShapeSubsetting::IndexClassificatorVector::const_iterator& mrLastEnd; DrawShapeSubsetting::IndexClassificator meClass; }; DocTreeNode makeTreeNode( const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rStart, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd ) { return DocTreeNode( ::std::distance(rBegin, rStart), ::std::distance(rBegin, rEnd) ); } } DocTreeNode DrawShapeSubsetting::implGetTreeNode( const IndexClassificatorVector::const_iterator& rBegin, const IndexClassificatorVector::const_iterator& rEnd, sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { const IndexClassificator eRequestedClass( mapDocTreeNode( eNodeType ) ); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastBegin(rEnd); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastEnd(rEnd); // create a nth element functor for the requested class of // actions, and nNodeIndex as the target index FindNthElementFunctor aFunctor( nNodeIndex, aLastBegin, aLastEnd, eRequestedClass ); // find given index in the given range iterateActionClassifications( aFunctor, rBegin, rEnd ); return makeTreeNode( maActionClassVector.begin(), aLastBegin, aLastEnd ); } DocTreeNode DrawShapeSubsetting::getTreeNode( sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); return implGetTreeNode( maActionClassVector.begin(), maActionClassVector.end(), nNodeIndex, eNodeType ); } sal_Int32 DrawShapeSubsetting::getNumberOfSubsetTreeNodes( const DocTreeNode& rParentNode, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); // convert from vector indices to vector iterators const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aBegin( maActionClassVector.begin() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentBegin( aBegin + rParentNode.getStartIndex() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentEnd( aBegin + rParentNode.getEndIndex() ); return implGetNumberOfTreeNodes( aParentBegin, aParentEnd, eNodeType ); } DocTreeNode DrawShapeSubsetting::getSubsetTreeNode( const DocTreeNode& rParentNode, sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); // convert from vector indices to vector iterators const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aBegin( maActionClassVector.begin() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentBegin( aBegin + rParentNode.getStartIndex() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentEnd( aBegin + rParentNode.getEndIndex() ); return implGetTreeNode( aParentBegin, aParentEnd, nNodeIndex, eNodeType ); } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */