/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include "tablelayouter.hxx" #include #include #include using ::editeng::SvxBorderLine; using namespace ::com::sun::star::uno; using namespace ::com::sun::star::lang; using namespace ::com::sun::star::container; using namespace ::com::sun::star::beans; using namespace ::com::sun::star::table; using namespace ::com::sun::star::text; namespace sdr::table { static SvxBorderLine gEmptyBorder; constexpr OUStringLiteral gsSize( u"Size" ); TableLayouter::TableLayouter( const TableModelRef& xTableModel ) : mxTable( xTableModel ) { } TableLayouter::~TableLayouter() { ClearBorderLayout(); } basegfx::B2ITuple TableLayouter::getCellSize( const CellRef& xCell, const CellPos& rPos ) const { sal_Int32 width = 0; sal_Int32 height = 0; try { if( xCell.is() && !xCell->isMerged() ) { CellPos aPos( rPos ); sal_Int32 nRowCount = getRowCount(); sal_Int32 nRowSpan = std::max( xCell->getRowSpan(), sal_Int32(1) ); while( nRowSpan && (aPos.mnRow < nRowCount) ) { if( static_cast(maRows.size()) <= aPos.mnRow ) break; height = o3tl::saturating_add(height, maRows[aPos.mnRow++].mnSize); nRowSpan--; } sal_Int32 nColCount = getColumnCount(); sal_Int32 nColSpan = std::max( xCell->getColumnSpan(), sal_Int32(1) ); while( nColSpan && (aPos.mnCol < nColCount ) ) { if( static_cast(maColumns.size()) <= aPos.mnCol ) break; width = o3tl::saturating_add(width, maColumns[aPos.mnCol++].mnSize); nColSpan--; } } } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } return basegfx::B2ITuple( width, height ); } bool TableLayouter::getCellArea( const CellRef& xCell, const CellPos& rPos, basegfx::B2IRectangle& rArea ) const { try { if( xCell.is() && !xCell->isMerged() && isValid(rPos) ) { const basegfx::B2ITuple aCellSize( getCellSize( xCell, rPos ) ); const bool bRTL = (mxTable->getSdrTableObj()->GetWritingMode() == WritingMode_RL_TB); if( (rPos.mnCol < static_cast(maColumns.size())) && (rPos.mnRow < static_cast(maRows.size()) ) ) { const sal_Int32 y = maRows[rPos.mnRow].mnPos; sal_Int32 endy; if (o3tl::checked_add(y, aCellSize.getY(), endy)) return false; if(bRTL) { ///For RTL Table Calculate the Right End of cell instead of Left const sal_Int32 x = maColumns[rPos.mnCol].mnPos + maColumns[rPos.mnCol].mnSize; sal_Int32 startx; if (o3tl::checked_sub(x, aCellSize.getX(), startx)) return false; rArea = basegfx::B2IRectangle(startx, y, x, endy); } else { const sal_Int32 x = maColumns[rPos.mnCol].mnPos; sal_Int32 endx; if (o3tl::checked_add(x, aCellSize.getX(), endx)) return false; rArea = basegfx::B2IRectangle(x, y, endx, endy); } return true; } } } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } return false; } sal_Int32 TableLayouter::getRowHeight( sal_Int32 nRow ) const { if( isValidRow(nRow) ) return maRows[nRow].mnSize; else return 0; } sal_Int32 TableLayouter::getColumnWidth( sal_Int32 nColumn ) const { if( isValidColumn(nColumn) ) return maColumns[nColumn].mnSize; else return 0; } sal_Int32 TableLayouter::calcPreferredColumnWidth( sal_Int32 nColumn, Size aSize ) const { sal_Int32 nRet = 0; for ( sal_uInt32 nRow = 0; nRow < static_cast(maRows.size()); ++nRow ) { // Account for the space desired by spanned columns. // Only the last spanned cell will try to ensure sufficient space, // by looping through the previous columns, subtracting their portion. sal_Int32 nWish = 0; sal_Int32 nSpannedColumn = nColumn; bool bFindSpan = true; while ( bFindSpan && isValidColumn(nSpannedColumn) ) { // recursive function call gets earlier portion of spanned column. if ( nSpannedColumn < nColumn ) nWish -= calcPreferredColumnWidth( nSpannedColumn, aSize ); CellRef xCell( getCell( CellPos( nSpannedColumn, nRow ) ) ); if ( xCell.is() && !xCell->isMerged() && (xCell->getColumnSpan() == 1 || nSpannedColumn < nColumn) ) { nWish += xCell->calcPreferredWidth(aSize); bFindSpan = false; } else if ( xCell.is() && xCell->isMerged() && nColumn == nSpannedColumn && isValidColumn(nColumn + 1) ) { xCell = getCell( CellPos( nColumn + 1, nRow ) ); bFindSpan = xCell.is() && !xCell->isMerged(); } nSpannedColumn--; } nRet = std::max( nRet, nWish ); } return nRet; } bool TableLayouter::isEdgeVisible( sal_Int32 nEdgeX, sal_Int32 nEdgeY, bool bHorizontal ) const { const BorderLineMap& rMap = bHorizontal ? maHorizontalBorders : maVerticalBorders; if( (nEdgeX >= 0) && (nEdgeX < sal::static_int_cast(rMap.size())) && (nEdgeY >= 0) && (nEdgeY < sal::static_int_cast(rMap[nEdgeX].size())) ) { return rMap[nEdgeX][nEdgeY] != nullptr; } else { OSL_FAIL( "sdr::table::TableLayouter::getBorderLine(), invalid edge!" ); } return false; } /** returns the requested borderline in rpBorderLine or a null pointer if there is no border at this edge */ SvxBorderLine* TableLayouter::getBorderLine( sal_Int32 nEdgeX, sal_Int32 nEdgeY, bool bHorizontal )const { SvxBorderLine* pLine = nullptr; const BorderLineMap& rMap = bHorizontal ? maHorizontalBorders : maVerticalBorders; if( (nEdgeX >= 0) && (nEdgeX < sal::static_int_cast(rMap.size())) && (nEdgeY >= 0) && (nEdgeY < sal::static_int_cast(rMap[nEdgeX].size())) ) { pLine = rMap[nEdgeX][nEdgeY]; if( pLine == &gEmptyBorder ) pLine = nullptr; } else { OSL_FAIL( "sdr::table::TableLayouter::getBorderLine(), invalid edge!" ); } return pLine; } std::vector TableLayouter::getHorizontalEdges() { std::vector aReturn; sal_Int32 nRowSize = sal_Int32(maRows.size()); for (sal_Int32 i = 0; i <= nRowSize; i++) { sal_Int32 nEdgeMin = 0; sal_Int32 nEdgeMax = 0; sal_Int32 nEdge = getHorizontalEdge(i, &nEdgeMin, &nEdgeMax); nEdgeMin -= nEdge; nEdgeMax -= nEdge; aReturn.emplace_back(i, nEdge, nEdgeMin, nEdgeMax); } return aReturn; } std::vector TableLayouter::getVerticalEdges() { std::vector aReturn; sal_Int32 nColumnSize = sal_Int32(maColumns.size()); for (sal_Int32 i = 0; i <= nColumnSize; i++) { sal_Int32 nEdgeMin = 0; sal_Int32 nEdgeMax = 0; sal_Int32 nEdge = getVerticalEdge(i, &nEdgeMin, &nEdgeMax); nEdgeMin -= nEdge; nEdgeMax -= nEdge; aReturn.emplace_back(i, nEdge, nEdgeMin, nEdgeMax); } return aReturn; } sal_Int32 TableLayouter::getHorizontalEdge( int nEdgeY, sal_Int32* pnMin /*= 0*/, sal_Int32* pnMax /*= 0*/ ) { sal_Int32 nRet = 0; const sal_Int32 nRowCount = getRowCount(); if( (nEdgeY >= 0) && (nEdgeY <= nRowCount ) ) nRet = maRows[std::min(static_cast(nEdgeY),nRowCount-1)].mnPos; if( nEdgeY == nRowCount ) nRet += maRows[nEdgeY - 1].mnSize; if( pnMin ) { if( (nEdgeY > 0) && (nEdgeY <= nRowCount ) ) { *pnMin = maRows[nEdgeY-1].mnPos + 600; // todo } else { *pnMin = nRet; } } if( pnMax ) { *pnMax = 0x0fffffff; } return nRet; } sal_Int32 TableLayouter::getVerticalEdge( int nEdgeX, sal_Int32* pnMin /*= 0*/, sal_Int32* pnMax /*= 0*/ ) { sal_Int32 nRet = 0; const sal_Int32 nColCount = getColumnCount(); if( (nEdgeX >= 0) && (nEdgeX <= nColCount ) ) nRet = maColumns[std::min(static_cast(nEdgeX),nColCount-1)].mnPos; const bool bRTL = (mxTable->getSdrTableObj()->GetWritingMode() == WritingMode_RL_TB); if( bRTL ) { if( (nEdgeX >= 0) && (nEdgeX < nColCount) ) nRet += maColumns[nEdgeX].mnSize; } else { if( nEdgeX == nColCount ) nRet += maColumns[nEdgeX - 1].mnSize; } if( pnMin ) { *pnMin = nRet; if( bRTL ) { if( nEdgeX < nColCount ) *pnMin = nRet - maColumns[nEdgeX].mnSize + getMinimumColumnWidth(nEdgeX); } else { if( (nEdgeX > 0) && (nEdgeX <= nColCount ) ) *pnMin = maColumns[nEdgeX-1].mnPos + getMinimumColumnWidth( nEdgeX-1 ); } } if( pnMax ) { *pnMax = 0x0fffffff; // todo if( bRTL ) { if( nEdgeX > 0 ) *pnMax = nRet + maColumns[nEdgeX-1].mnSize - getMinimumColumnWidth( nEdgeX-1 ); } else { if( (nEdgeX >= 0) && (nEdgeX < nColCount ) ) *pnMax = maColumns[nEdgeX].mnPos + maColumns[nEdgeX].mnSize - getMinimumColumnWidth( nEdgeX ); } } return nRet; } static bool checkMergeOrigin( const TableModelRef& xTable, sal_Int32 nMergedX, sal_Int32 nMergedY, sal_Int32 nCellX, sal_Int32 nCellY, bool& bRunning ) { Reference< XMergeableCell > xCell( xTable->getCellByPosition( nCellX, nCellY ), UNO_QUERY ); if( xCell.is() && !xCell->isMerged() ) { const sal_Int32 nRight = xCell->getColumnSpan() + nCellX; const sal_Int32 nBottom = xCell->getRowSpan() + nCellY; if( (nMergedX < nRight) && (nMergedY < nBottom) ) return true; bRunning = false; } return false; } /** returns true if the cell(nMergedX,nMergedY) is merged with other cells. the returned cell( rOriginX, rOriginY ) is the origin( top left cell ) of the merge. */ bool findMergeOrigin( const TableModelRef& xTable, sal_Int32 nMergedX, sal_Int32 nMergedY, sal_Int32& rOriginX, sal_Int32& rOriginY ) { rOriginX = nMergedX; rOriginY = nMergedY; if( xTable.is() ) try { // check if this cell already the origin or not merged at all Reference< XMergeableCell > xCell( xTable->getCellByPosition( nMergedX, nMergedY ), UNO_QUERY_THROW ); if( !xCell->isMerged() ) return true; bool bCheckVert = true; bool bCheckHorz = true; sal_Int32 nMinCol = 0; sal_Int32 nMinRow = 0; sal_Int32 nStep = 1, i; sal_Int32 nRow, nCol; do { if( bCheckVert ) { nRow = nMergedY - nStep; if( nRow >= nMinRow ) { nCol = nMergedX; for( i = 0; (i <= nStep) && (nCol >= nMinCol); i++, nCol-- ) { if( checkMergeOrigin( xTable, nMergedX, nMergedY, nCol, nRow, bCheckVert ) ) { rOriginX = nCol; rOriginY = nRow; return true; } if( !bCheckVert ) { if( nCol == nMergedX ) { nMinRow = nRow+1; } else { bCheckVert = true; } break; } } } else { bCheckVert = false; } } if( bCheckHorz ) { nCol = nMergedX - nStep; if( nCol >= nMinCol ) { nRow = nMergedY; for( i = 0; (i < nStep) && (nRow >= nMinRow); i++, nRow-- ) { if( checkMergeOrigin( xTable, nMergedX, nMergedY, nCol, nRow, bCheckHorz ) ) { rOriginX = nCol; rOriginY = nRow; return true; } if( !bCheckHorz ) { if( nRow == nMergedY ) { nMinCol = nCol+1; } else { bCheckHorz = true; } break; } } } else { bCheckHorz = false; } } nStep++; } while( bCheckVert || bCheckHorz ); } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } return false; } sal_Int32 TableLayouter::getMinimumColumnWidth( sal_Int32 nColumn ) { if( isValidColumn( nColumn ) ) { return maColumns[nColumn].mnMinSize; } else { OSL_FAIL( "TableLayouter::getMinimumColumnWidth(), column out of range!" ); return 0; } } sal_Int32 TableLayouter::distribute( LayoutVector& rLayouts, sal_Int32 nDistribute ) { // break loops after 100 runs to avoid freezing office due to developer error sal_Int32 nSafe = 100; const std::size_t nCount = rLayouts.size(); std::size_t nIndex; bool bConstrainsBroken = false; do { bConstrainsBroken = false; // first enforce minimum size constrains on all entities for( nIndex = 0; nIndex < nCount; ++nIndex ) { Layout& rLayout = rLayouts[nIndex]; if( rLayout.mnSize < rLayout.mnMinSize ) { sal_Int32 nDiff(0); bConstrainsBroken |= o3tl::checked_sub(rLayout.mnMinSize, rLayout.mnSize, nDiff); bConstrainsBroken |= o3tl::checked_sub(nDistribute, nDiff, nDistribute); rLayout.mnSize = rLayout.mnMinSize; } } // calculate current width // if nDistribute is < 0 (shrinking), entities that are already // at minimum width are not counted sal_Int32 nCurrentWidth = 0; for( nIndex = 0; nIndex < nCount; ++nIndex ) { Layout& rLayout = rLayouts[nIndex]; if( (nDistribute > 0) || (rLayout.mnSize > rLayout.mnMinSize) ) nCurrentWidth = o3tl::saturating_add(nCurrentWidth, rLayout.mnSize); } // now distribute over entities if( (nCurrentWidth != 0) && (nDistribute != 0) ) { sal_Int32 nDistributed = nDistribute; for( nIndex = 0; nIndex < nCount; ++nIndex ) { Layout& rLayout = rLayouts[nIndex]; if( (nDistribute > 0) || (rLayout.mnSize > rLayout.mnMinSize) ) { sal_Int32 n(nDistributed); // for last entity use up rest if (nIndex != (nCount-1)) { bConstrainsBroken |= o3tl::checked_multiply(nDistribute, rLayout.mnSize, n); n /= nCurrentWidth; } bConstrainsBroken |= o3tl::checked_add(rLayout.mnSize, n, rLayout.mnSize); nDistributed -= n; if( rLayout.mnSize < rLayout.mnMinSize ) bConstrainsBroken = true; } } } } while( bConstrainsBroken && --nSafe ); sal_Int32 nSize = 0; for( nIndex = 0; nIndex < nCount; ++nIndex ) nSize = o3tl::saturating_add(nSize, rLayouts[nIndex].mnSize); return nSize; } typedef std::vector< CellRef > MergeableCellVector; typedef std::vector< MergeableCellVector > MergeVector; void TableLayouter::LayoutTableWidth( tools::Rectangle& rArea, bool bFit ) { const sal_Int32 nColCount = getColumnCount(); const sal_Int32 nRowCount = getRowCount(); if( nColCount == 0 ) return; MergeVector aMergedCells( nColCount ); std::vector aOptimalColumns; const OUString sOptimalSize("OptimalSize"); if( sal::static_int_cast< sal_Int32 >( maColumns.size() ) != nColCount ) maColumns.resize( nColCount ); Reference< XTableColumns > xCols( mxTable->getColumns(), UNO_SET_THROW ); // first calculate current width and initial minimum width per column, // merged cells will be counted later sal_Int32 nCurrentWidth = 0; sal_Int32 nCol = 0, nRow = 0; for( nCol = 0; nCol < nColCount; nCol++ ) { sal_Int32 nMinWidth = 0; bool bIsEmpty = true; // check if all cells in this column are merged for( nRow = 0; nRow < nRowCount; ++nRow ) { CellRef xCell( getCell( CellPos( nCol, nRow ) ) ); if( xCell.is() && !xCell->isMerged() ) { bIsEmpty = false; sal_Int32 nColSpan = xCell->getColumnSpan(); if( nColSpan > 1 ) { // merged cells will be evaluated later aMergedCells[nCol+nColSpan-1].push_back( xCell ); } else { nMinWidth = std::max( nMinWidth, xCell->getMinimumWidth() ); } } } maColumns[nCol].mnMinSize = nMinWidth; if( bIsEmpty ) { maColumns[nCol].mnSize = 0; } else { sal_Int32 nColWidth = 0; Reference< XPropertySet > xColSet( xCols->getByIndex( nCol ), UNO_QUERY_THROW ); bool bOptimal = false; xColSet->getPropertyValue( sOptimalSize ) >>= bOptimal; if( bOptimal ) { aOptimalColumns.push_back(nCol); } else { xColSet->getPropertyValue( gsSize ) >>= nColWidth; } maColumns[nCol].mnSize = std::max( nColWidth, nMinWidth); nCurrentWidth = o3tl::saturating_add(nCurrentWidth, maColumns[nCol].mnSize); } } // if we have optimal sized rows, distribute what is given (left) if( !bFit && !aOptimalColumns.empty() && (nCurrentWidth < rArea.getWidth()) ) { sal_Int32 nLeft = rArea.getWidth() - nCurrentWidth; sal_Int32 nDistribute = nLeft / aOptimalColumns.size(); auto iter( aOptimalColumns.begin() ); while( iter != aOptimalColumns.end() ) { sal_Int32 nOptCol = *iter++; if( iter == aOptimalColumns.end() ) nDistribute = nLeft; maColumns[nOptCol].mnSize += nDistribute; nLeft -= nDistribute; } DBG_ASSERT( nLeft == 0, "svx::TableLayouter::LayoutTableWidtht(), layouting failed!" ); } // now check if merged cells fit for( nCol = 1; nCol < nColCount; ++nCol ) { bool bChanges = false; const sal_Int32 nOldSize = maColumns[nCol].mnSize; for( const CellRef& xCell : aMergedCells[nCol] ) { sal_Int32 nMinWidth = xCell->getMinimumWidth(); for( sal_Int32 nMCol = nCol - xCell->getColumnSpan() + 1; (nMCol > 0) && (nMCol < nCol); ++nMCol ) nMinWidth -= maColumns[nMCol].mnSize; if( nMinWidth > maColumns[nCol].mnMinSize ) maColumns[nCol].mnMinSize = nMinWidth; if( nMinWidth > maColumns[nCol].mnSize ) { maColumns[nCol].mnSize = nMinWidth; bChanges = true; } } if( bChanges ) { nCurrentWidth = o3tl::saturating_add(nCurrentWidth, maColumns[nCol].mnSize - nOldSize); } } // now scale if wanted and needed if( bFit && (nCurrentWidth != rArea.getWidth()) ) distribute( maColumns, rArea.getWidth() - nCurrentWidth ); // last step, update left edges sal_Int32 nNewWidth = 0; const bool bRTL = (mxTable->getSdrTableObj()->GetWritingMode() == WritingMode_RL_TB); RangeIterator coliter( 0, nColCount, !bRTL ); while( coliter.next(nCol ) ) { maColumns[nCol].mnPos = nNewWidth; nNewWidth = o3tl::saturating_add(nNewWidth, maColumns[nCol].mnSize); if( bFit ) { Reference< XPropertySet > xColSet( xCols->getByIndex(nCol), UNO_QUERY_THROW ); xColSet->setPropertyValue( gsSize, Any( maColumns[nCol].mnSize ) ); } } rArea.SetSize( Size( nNewWidth, rArea.GetHeight() ) ); updateCells( rArea ); } void TableLayouter::LayoutTableHeight( tools::Rectangle& rArea, bool bFit ) { const sal_Int32 nColCount = getColumnCount(); const sal_Int32 nRowCount = getRowCount(); if( nRowCount == 0 ) return; Reference< XTableRows > xRows( mxTable->getRows() ); MergeVector aMergedCells( nRowCount ); std::vector aOptimalRows; const OUString sOptimalSize("OptimalSize"); // first calculate current height and initial minimum size per column, // merged cells will be counted later sal_Int32 nCurrentHeight = 0; sal_Int32 nCol, nRow; for( nRow = 0; nRow < nRowCount; ++nRow ) { Reference< XPropertySet > xRowSet( xRows->getByIndex(nRow), UNO_QUERY_THROW ); sal_Int32 nRowPropHeight = 0; xRowSet->getPropertyValue( gsSize ) >>= nRowPropHeight; sal_Int32 nMinHeight = 0; bool bIsEmpty = true; // check if all cells in this row are merged bool bRowHasText = false; bool bRowHasCellInEditMode = false; for( nCol = 0; nCol < nColCount; ++nCol ) { CellRef xCell( getCell( CellPos( nCol, nRow ) ) ); if( xCell.is() && !xCell->isMerged() ) { bIsEmpty = false; sal_Int32 nRowSpan = xCell->getRowSpan(); if( nRowSpan > 1 ) { // merged cells will be evaluated later aMergedCells[nRow+nRowSpan-1].push_back( xCell ); } else { bool bCellHasText = xCell->hasText(); bool bCellInEditMode = xCell->IsTextEditActive(); if (!bRowHasCellInEditMode && bCellInEditMode) bRowHasCellInEditMode = true; if ((bRowHasText == bCellHasText) || (bRowHasText && bCellInEditMode)) { nMinHeight = std::max( nMinHeight, xCell->getMinimumHeight() ); } else if ( !bRowHasText && bCellHasText ) { bRowHasText = true; nMinHeight = xCell->getMinimumHeight(); } // tdf#137949 We should consider "Height" property while calculating minimum height. // This control decides when we use "Height" property value instead of calculated minimum height // Case 1: * Row has "Height" property // * Calculated minimum height is smaller than Height property value. // Case 2: * Row has "Height" property // * Calculated minimum height is bigger than Height property value and // * Row has not any text of any cell in edit mode in the row (means completely empty) if ((nMinHeight < nRowPropHeight && nRowPropHeight > 0 ) || (nMinHeight > nRowPropHeight && nRowPropHeight > 0 && (!bRowHasText && !bRowHasCellInEditMode))) { nMinHeight = nRowPropHeight; } } } } maRows[nRow].mnMinSize = nMinHeight; if( bIsEmpty ) { maRows[nRow].mnSize = 0; } else { sal_Int32 nRowHeight = 0; bool bOptimal = false; xRowSet->getPropertyValue( sOptimalSize ) >>= bOptimal; if( bOptimal ) { aOptimalRows.push_back( nRow ); } else { xRowSet->getPropertyValue( gsSize ) >>= nRowHeight; } maRows[nRow].mnSize = nRowHeight; if( maRows[nRow].mnSize < nMinHeight ) maRows[nRow].mnSize = nMinHeight; nCurrentHeight = o3tl::saturating_add(nCurrentHeight, maRows[nRow].mnSize); } } // if we have optimal sized rows, distribute what is given (left) if( !bFit && !aOptimalRows.empty() && (nCurrentHeight < rArea.getHeight()) ) { sal_Int32 nLeft = rArea.getHeight() - nCurrentHeight; sal_Int32 nDistribute = nLeft / aOptimalRows.size(); auto iter( aOptimalRows.begin() ); while( iter != aOptimalRows.end() ) { sal_Int32 nOptRow = *iter++; if( iter == aOptimalRows.end() ) nDistribute = nLeft; maRows[nOptRow].mnSize += nDistribute; nLeft -= nDistribute; } DBG_ASSERT( nLeft == 0, "svx::TableLayouter::LayoutTableHeight(), layouting failed!" ); } // now check if merged cells fit for( nRow = 1; nRow < nRowCount; ++nRow ) { bool bChanges = false; sal_Int32 nOldSize = maRows[nRow].mnSize; for( const CellRef& xCell : aMergedCells[nRow] ) { sal_Int32 nMinHeight = xCell->getMinimumHeight(); for( sal_Int32 nMRow = nRow - xCell->getRowSpan() + 1; (nMRow > 0) && (nMRow < nRow); ++nMRow ) nMinHeight -= maRows[nMRow].mnSize; if( nMinHeight > maRows[nRow].mnMinSize ) maRows[nRow].mnMinSize = nMinHeight; if( nMinHeight > maRows[nRow].mnSize ) { maRows[nRow].mnSize = nMinHeight; bChanges = true; } } if( bChanges ) nCurrentHeight = o3tl::saturating_add(nCurrentHeight, maRows[nRow].mnSize - nOldSize); } // now scale if wanted and needed if( bFit && nCurrentHeight != rArea.getHeight() ) distribute(maRows, o3tl::saturating_sub(rArea.getHeight(), nCurrentHeight)); // last step, update left edges sal_Int32 nNewHeight = 0; for( nRow = 0; nRow < nRowCount; ++nRow ) { maRows[nRow].mnPos = nNewHeight; nNewHeight = o3tl::saturating_add(nNewHeight, maRows[nRow].mnSize); if( bFit ) { Reference< XPropertySet > xRowSet( xRows->getByIndex(nRow), UNO_QUERY_THROW ); xRowSet->setPropertyValue( gsSize, Any( maRows[nRow].mnSize ) ); } } rArea.SetSize( Size( rArea.GetWidth(), nNewHeight ) ); updateCells( rArea ); } /** try to fit the table into the given rectangle. If the rectangle is too small, it will be grown to fit the table. */ void TableLayouter::LayoutTable( tools::Rectangle& rRectangle, bool bFitWidth, bool bFitHeight ) { if( !mxTable.is() ) return; const sal_Int32 nRowCount = mxTable->getRowCount(); const sal_Int32 nColCount = mxTable->getColumnCount(); if( (nRowCount != getRowCount()) || (nColCount != getColumnCount()) ) { if( static_cast< sal_Int32 >( maRows.size() ) != nRowCount ) maRows.resize( nRowCount ); for( sal_Int32 nRow = 0; nRow < nRowCount; nRow++ ) maRows[nRow].clear(); if( static_cast< sal_Int32 >( maColumns.size() ) != nColCount ) maColumns.resize( nColCount ); for( sal_Int32 nCol = 0; nCol < nColCount; nCol++ ) maColumns[nCol].clear(); } LayoutTableWidth( rRectangle, bFitWidth ); LayoutTableHeight( rRectangle, bFitHeight ); UpdateBorderLayout(); } void TableLayouter::updateCells( tools::Rectangle const & rRectangle ) { const sal_Int32 nColCount = getColumnCount(); const sal_Int32 nRowCount = getRowCount(); CellPos aPos; for( aPos.mnRow = 0; aPos.mnRow < nRowCount; aPos.mnRow++ ) { for( aPos.mnCol = 0; aPos.mnCol < nColCount; aPos.mnCol++ ) { CellRef xCell( getCell( aPos ) ); if( xCell.is() ) { basegfx::B2IRectangle aCellArea; if( getCellArea( xCell, aPos, aCellArea ) ) { tools::Rectangle aCellRect; aCellRect.SetLeft( aCellArea.getMinX() ); aCellRect.SetRight( aCellArea.getMaxX() ); aCellRect.SetTop( aCellArea.getMinY() ); aCellRect.SetBottom( aCellArea.getMaxY() ); aCellRect.Move( rRectangle.Left(), rRectangle.Top() ); xCell->setCellRect( aCellRect ); } } } } } CellRef TableLayouter::getCell( const CellPos& rPos ) const { CellRef xCell; if( mxTable.is() ) try { xCell.set( dynamic_cast< Cell* >( mxTable->getCellByPosition( rPos.mnCol, rPos.mnRow ).get() ) ); } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } return xCell; } bool TableLayouter::HasPriority( const SvxBorderLine* pThis, const SvxBorderLine* pOther ) { if (!pThis || ((pThis == &gEmptyBorder) && (pOther != nullptr))) return false; if (!pOther || (pOther == &gEmptyBorder)) return true; sal_uInt16 nThisSize = pThis->GetScaledWidth(); sal_uInt16 nOtherSize = pOther->GetScaledWidth(); if (nThisSize > nOtherSize) return true; else if (nThisSize < nOtherSize) { return false; } else { if ( pOther->GetInWidth() && !pThis->GetInWidth() ) { return true; } else if ( pThis->GetInWidth() && !pOther->GetInWidth() ) { return false; } else { return true; //! ??? } } } void TableLayouter::SetBorder( sal_Int32 nCol, sal_Int32 nRow, bool bHorizontal, const SvxBorderLine* pLine ) { if (!pLine) pLine = &gEmptyBorder; BorderLineMap& rMap = bHorizontal ? maHorizontalBorders : maVerticalBorders; if( (nCol >= 0) && (nCol < sal::static_int_cast(rMap.size())) && (nRow >= 0) && (nRow < sal::static_int_cast(rMap[nCol].size())) ) { SvxBorderLine *pOld = rMap[nCol][nRow]; if (HasPriority(pLine, pOld)) { if (pOld && pOld != &gEmptyBorder) delete pOld; SvxBorderLine* pNew = (pLine != &gEmptyBorder) ? new SvxBorderLine(*pLine) : &gEmptyBorder; rMap[nCol][nRow] = pNew; } } else { OSL_FAIL( "sdr::table::TableLayouter::SetBorder(), invalid border!" ); } } void TableLayouter::ClearBorderLayout() { ClearBorderLayout(maHorizontalBorders); ClearBorderLayout(maVerticalBorders); } void TableLayouter::ClearBorderLayout(BorderLineMap& rMap) { const sal_Int32 nColCount = rMap.size(); for( sal_Int32 nCol = 0; nCol < nColCount; nCol++ ) { const sal_Int32 nRowCount = rMap[nCol].size(); for( sal_Int32 nRow = 0; nRow < nRowCount; nRow++ ) { SvxBorderLine* pLine = rMap[nCol][nRow]; if( pLine ) { if( pLine != &gEmptyBorder ) delete pLine; rMap[nCol][nRow] = nullptr; } } } } void TableLayouter::ResizeBorderLayout() { ClearBorderLayout(); ResizeBorderLayout(maHorizontalBorders); ResizeBorderLayout(maVerticalBorders); } void TableLayouter::ResizeBorderLayout( BorderLineMap& rMap ) { const sal_Int32 nColCount = getColumnCount() + 1; const sal_Int32 nRowCount = getRowCount() + 1; if( sal::static_int_cast(rMap.size()) != nColCount ) rMap.resize( nColCount ); for( sal_Int32 nCol = 0; nCol < nColCount; nCol++ ) { if( sal::static_int_cast(rMap[nCol].size()) != nRowCount ) rMap[nCol].resize( nRowCount ); } } void TableLayouter::UpdateBorderLayout() { // make sure old border layout is cleared and border maps have correct size ResizeBorderLayout(); const sal_Int32 nColCount = getColumnCount(); const sal_Int32 nRowCount = getRowCount(); CellPos aPos; for( aPos.mnRow = 0; aPos.mnRow < nRowCount; aPos.mnRow++ ) { for( aPos.mnCol = 0; aPos.mnCol < nColCount; aPos.mnCol++ ) { CellRef xCell( getCell( aPos ) ); if( !xCell.is() ) continue; const SvxBoxItem* pThisAttr = xCell->GetItemSet().GetItem( SDRATTR_TABLE_BORDER ); OSL_ENSURE(pThisAttr,"sdr::table::TableLayouter::UpdateBorderLayout(), no border attribute?"); if( !pThisAttr ) continue; const sal_Int32 nLastRow = xCell->getRowSpan() + aPos.mnRow; const sal_Int32 nLastCol = xCell->getColumnSpan() + aPos.mnCol; for( sal_Int32 nRow = aPos.mnRow; nRow < nLastRow; nRow++ ) { SetBorder( aPos.mnCol, nRow, false, pThisAttr->GetLeft() ); SetBorder( nLastCol, nRow, false, pThisAttr->GetRight() ); } for( sal_Int32 nCol = aPos.mnCol; nCol < nLastCol; nCol++ ) { SetBorder( nCol, aPos.mnRow, true, pThisAttr->GetTop() ); SetBorder( nCol, nLastRow, true, pThisAttr->GetBottom() ); } } } } void TableLayouter::DistributeColumns( ::tools::Rectangle& rArea, sal_Int32 nFirstCol, sal_Int32 nLastCol, const bool bOptimize, const bool bMinimize ) { if( !mxTable.is() ) return; try { const sal_Int32 nColCount = getColumnCount(); Reference< XTableColumns > xCols( mxTable->getColumns(), UNO_SET_THROW ); const Size aSize(0xffffff, 0xffffff); //special case - optimize a single column if ( (bOptimize || bMinimize) && nFirstCol == nLastCol ) { const sal_Int32 nWish = calcPreferredColumnWidth(nFirstCol, aSize); if ( nWish < getColumnWidth(nFirstCol) ) { Reference< XPropertySet > xColSet( xCols->getByIndex(nFirstCol), UNO_QUERY_THROW ); xColSet->setPropertyValue( gsSize, Any( nWish ) ); //FitWidth automatically distributes the new excess space LayoutTable( rArea, /*bFitWidth=*/!bMinimize, /*bFitHeight=*/false ); } } if( (nFirstCol < 0) || (nFirstCol>= nLastCol) || (nLastCol >= nColCount) ) return; sal_Int32 nAllWidth = 0; float fAllWish = 0; sal_Int32 nUnused = 0; std::vector aWish(nColCount); for( sal_Int32 nCol = nFirstCol; nCol <= nLastCol; ++nCol ) nAllWidth += getColumnWidth(nCol); const sal_Int32 nEqualWidth = nAllWidth / (nLastCol-nFirstCol+1); //pass 1 - collect unneeded space (from an equal width perspective) if ( bMinimize || bOptimize ) { for( sal_Int32 nCol = nFirstCol; nCol <= nLastCol; ++nCol ) { const sal_Int32 nIndex = nCol - nFirstCol; aWish[nIndex] = calcPreferredColumnWidth(nCol, aSize); fAllWish += aWish[nIndex]; if ( aWish[nIndex] < nEqualWidth ) nUnused += nEqualWidth - aWish[nIndex]; } } const sal_Int32 nDistributeExcess = nAllWidth - fAllWish; sal_Int32 nWidth = nEqualWidth; for( sal_Int32 nCol = nFirstCol; nCol <= nLastCol; ++nCol ) { if ( !bMinimize && nCol == nLastCol ) nWidth = nAllWidth; // last column gets rounding/logic errors else if ( (bMinimize || bOptimize) && fAllWish ) { //pass 2 - first come, first served when requesting from the // unneeded pool, or proportionally allocate excess. const sal_Int32 nIndex = nCol - nFirstCol; if ( aWish[nIndex] > nEqualWidth + nUnused ) { nWidth = nEqualWidth + nUnused; nUnused = 0; } else { nWidth = aWish[nIndex]; if ( aWish[nIndex] > nEqualWidth ) nUnused -= aWish[nIndex] - nEqualWidth; if ( !bMinimize && nDistributeExcess > 0 ) nWidth += nWidth / fAllWish * nDistributeExcess; } } Reference< XPropertySet > xColSet( xCols->getByIndex( nCol ), UNO_QUERY_THROW ); xColSet->setPropertyValue( gsSize, Any( nWidth ) ); nAllWidth -= nWidth; } LayoutTable( rArea, !bMinimize, false ); } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } } void TableLayouter::DistributeRows( ::tools::Rectangle& rArea, sal_Int32 nFirstRow, sal_Int32 nLastRow, const bool bOptimize, const bool bMinimize ) { if( !mxTable.is() ) return; try { const sal_Int32 nRowCount = mxTable->getRowCount(); Reference< XTableRows > xRows( mxTable->getRows(), UNO_SET_THROW ); sal_Int32 nMinHeight = 0; //special case - minimize a single row if ( bMinimize && nFirstRow == nLastRow ) { const sal_Int32 nWish = std::max( maRows[nFirstRow].mnMinSize, nMinHeight ); if ( nWish < getRowHeight(nFirstRow) ) { Reference< XPropertySet > xRowSet( xRows->getByIndex( nFirstRow ), UNO_QUERY_THROW ); xRowSet->setPropertyValue( gsSize, Any( nWish ) ); LayoutTable( rArea, /*bFitWidth=*/false, /*bFitHeight=*/!bMinimize ); } } if( (nFirstRow < 0) || (nFirstRow>= nLastRow) || (nLastRow >= nRowCount) ) return; sal_Int32 nAllHeight = 0; sal_Int32 nMaxHeight = 0; for( sal_Int32 nRow = nFirstRow; nRow <= nLastRow; ++nRow ) { nMinHeight = std::max( maRows[nRow].mnMinSize, nMinHeight ); nMaxHeight = std::max( maRows[nRow].mnSize, nMaxHeight ); nAllHeight += maRows[nRow].mnSize; } const sal_Int32 nRows = nLastRow-nFirstRow+1; sal_Int32 nHeight = nAllHeight / nRows; if ( !bMinimize && nHeight < nMaxHeight ) { if ( !bOptimize ) { sal_Int32 nNeededHeight = nRows * nMaxHeight; rArea.AdjustBottom(nNeededHeight - nAllHeight ); nHeight = nMaxHeight; nAllHeight = nRows * nMaxHeight; } else if ( nHeight < nMinHeight ) { sal_Int32 nNeededHeight = nRows * nMinHeight; rArea.AdjustBottom(nNeededHeight - nAllHeight ); nHeight = nMinHeight; nAllHeight = nRows * nMinHeight; } } for( sal_Int32 nRow = nFirstRow; nRow <= nLastRow; ++nRow ) { if ( bMinimize ) nHeight = maRows[nRow].mnMinSize; else if ( nRow == nLastRow ) nHeight = nAllHeight; // last row get round errors Reference< XPropertySet > xRowSet( xRows->getByIndex( nRow ), UNO_QUERY_THROW ); xRowSet->setPropertyValue( gsSize, Any( nHeight ) ); nAllHeight -= nHeight; } LayoutTable( rArea, false, !bMinimize ); } catch( Exception& ) { TOOLS_WARN_EXCEPTION("svx", ""); } } void TableLayouter::dumpAsXml(xmlTextWriterPtr pWriter) const { xmlTextWriterStartElement(pWriter, BAD_CAST("TableLayouter")); xmlTextWriterStartElement(pWriter, BAD_CAST("columns")); for (const auto& rColumn : maColumns) rColumn.dumpAsXml(pWriter); xmlTextWriterEndElement(pWriter); xmlTextWriterStartElement(pWriter, BAD_CAST("rows")); for (const auto& rRow : maRows) rRow.dumpAsXml(pWriter); xmlTextWriterEndElement(pWriter); xmlTextWriterEndElement(pWriter); } void TableLayouter::Layout::dumpAsXml(xmlTextWriterPtr pWriter) const { xmlTextWriterStartElement(pWriter, BAD_CAST("TableLayouter_Layout")); xmlTextWriterWriteAttribute(pWriter, BAD_CAST("pos"), BAD_CAST(OString::number(mnPos).getStr())); xmlTextWriterWriteAttribute(pWriter, BAD_CAST("size"), BAD_CAST(OString::number(mnSize).getStr())); xmlTextWriterWriteAttribute(pWriter, BAD_CAST("minSize"), BAD_CAST(OString::number(mnMinSize).getStr())); xmlTextWriterEndElement(pWriter); } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */