/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include "xpolyimp.hxx" #include #include #include #include #include #include ImpXPolygon::ImpXPolygon(sal_uInt16 nInitSize, sal_uInt16 _nResize) : pPointAry(nullptr) , pFlagAry(nullptr) , pOldPointAry(nullptr) , bDeleteOldPoints(false) , nSize(0) , nResize(_nResize) , nPoints(0) { Resize(nInitSize); } ImpXPolygon::ImpXPolygon( const ImpXPolygon& rImpXPoly ) : pPointAry(nullptr) , pFlagAry(nullptr) , pOldPointAry(nullptr) , bDeleteOldPoints(false) , nSize(0) , nResize(rImpXPoly.nResize) , nPoints(0) { rImpXPoly.CheckPointDelete(); Resize( rImpXPoly.nSize ); // copy nPoints = rImpXPoly.nPoints; memcpy( pPointAry, rImpXPoly.pPointAry, nSize*sizeof( Point ) ); memcpy( pFlagAry.get(), rImpXPoly.pFlagAry.get(), nSize ); } ImpXPolygon::~ImpXPolygon() { delete[] reinterpret_cast(pPointAry); if ( bDeleteOldPoints ) { delete[] reinterpret_cast(pOldPointAry); pOldPointAry = nullptr; } } bool ImpXPolygon::operator==(const ImpXPolygon& rImpXPoly) const { return nPoints==rImpXPoly.nPoints && (nPoints==0 || (memcmp(pPointAry, rImpXPoly.pPointAry, nPoints*sizeof(Point))==0 && memcmp(pFlagAry.get(), rImpXPoly.pFlagAry.get(), nPoints)==0)); } /** Change polygon size * * @param nNewSize the new size of the polygon * @param bDeletePoints if FALSE, do not delete the point array directly but * wait for the next call before doing so. This prevents * errors with XPoly[n] = XPoly[0] where a resize might * destroy the right side point array too early. */ void ImpXPolygon::Resize( sal_uInt16 nNewSize, bool bDeletePoints ) { if( nNewSize == nSize ) return; PolyFlags* pOldFlagAry = pFlagAry.get(); sal_uInt16 nOldSize = nSize; CheckPointDelete(); pOldPointAry = pPointAry; // Round the new size to a multiple of nResize, if // the object was not newly created (nSize != 0) if ( nSize != 0 && nNewSize > nSize ) { DBG_ASSERT(nResize, "Trying to resize but nResize = 0 !"); nNewSize = nSize + ((nNewSize-nSize-1) / nResize + 1) * nResize; } // create point array nSize = nNewSize; pPointAry = reinterpret_cast(new char[ nSize*sizeof( Point ) ]); memset( pPointAry, 0, nSize*sizeof( Point ) ); // create flag array pFlagAry.reset( new PolyFlags[ nSize ] ); memset( pFlagAry.get(), 0, nSize ); // copy if needed if( nOldSize ) { if( nOldSize < nSize ) { memcpy( pPointAry, pOldPointAry, nOldSize*sizeof( Point ) ); memcpy( pFlagAry.get(), pOldFlagAry, nOldSize ); } else { memcpy( pPointAry, pOldPointAry, nSize*sizeof( Point ) ); memcpy( pFlagAry.get(), pOldFlagAry, nSize ); // adjust number of valid points if( nPoints > nSize ) nPoints = nSize; } if ( bDeletePoints ) { delete[] reinterpret_cast(pOldPointAry); pOldPointAry = nullptr; } else bDeleteOldPoints = true; delete[] pOldFlagAry; } } void ImpXPolygon::InsertSpace( sal_uInt16 nPos, sal_uInt16 nCount ) { CheckPointDelete(); if ( nPos > nPoints ) nPos = nPoints; // if the polygon is too small than enlarge it if( (nPoints + nCount) > nSize ) Resize( nPoints + nCount ); // If the insert is not at the last position, move everything after backwards if( nPos < nPoints ) { sal_uInt16 nMove = nPoints - nPos; memmove( &pPointAry[nPos+nCount], &pPointAry[nPos], nMove * sizeof(Point) ); memmove( &pFlagAry[nPos+nCount], &pFlagAry[nPos], nMove ); } memset( &pPointAry[nPos], 0, nCount * sizeof( Point ) ); memset( &pFlagAry [nPos], 0, nCount ); nPoints = nPoints + nCount; } void ImpXPolygon::Remove( sal_uInt16 nPos, sal_uInt16 nCount ) { CheckPointDelete(); if( (nPos + nCount) <= nPoints ) { sal_uInt16 nMove = nPoints - nPos - nCount; if( nMove ) { memmove( &pPointAry[nPos], &pPointAry[nPos+nCount], nMove * sizeof(Point) ); memmove( &pFlagAry[nPos], &pFlagAry[nPos+nCount], nMove ); } memset( &pPointAry[nPoints - nCount], 0, nCount * sizeof( Point ) ); memset( &pFlagAry [nPoints - nCount], 0, nCount ); nPoints = nPoints - nCount; } } void ImpXPolygon::CheckPointDelete() const { if ( bDeleteOldPoints ) { delete[] reinterpret_cast(pOldPointAry); const_cast< ImpXPolygon* >(this)->pOldPointAry = nullptr; const_cast< ImpXPolygon* >(this)->bDeleteOldPoints = false; } } XPolygon::XPolygon( sal_uInt16 nSize ) : pImpXPolygon( ImpXPolygon( nSize, 16 ) ) { } XPolygon::XPolygon( const XPolygon& rXPoly ) : pImpXPolygon(rXPoly.pImpXPolygon) { } XPolygon::XPolygon( XPolygon&& rXPoly ) : pImpXPolygon(std::move(rXPoly.pImpXPolygon)) { } /// create a XPolygon out of a standard polygon XPolygon::XPolygon( const tools::Polygon& rPoly ) : pImpXPolygon( rPoly.GetSize() ) { sal_uInt16 nSize = rPoly.GetSize(); pImpXPolygon->nPoints = nSize; for( sal_uInt16 i = 0; i < nSize; i++ ) { pImpXPolygon->pPointAry[i] = rPoly[i]; pImpXPolygon->pFlagAry[i] = rPoly.GetFlags( i ); } } /// create a rectangle (also with rounded corners) as a Bézier polygon XPolygon::XPolygon(const tools::Rectangle& rRect, long nRx, long nRy) : pImpXPolygon( 17 ) { long nWh = (rRect.GetWidth() - 1) / 2; long nHh = (rRect.GetHeight() - 1) / 2; if ( nRx > nWh ) nRx = nWh; if ( nRy > nHh ) nRy = nHh; // negate Rx => circle clockwise nRx = -nRx; // factor for control points of the Bézier curve: 8/3 * (sin(45g) - 0.5) long nXHdl = (long)(0.552284749 * nRx); long nYHdl = (long)(0.552284749 * nRy); sal_uInt16 nPos = 0; if ( nRx && nRy ) { Point aCenter; for (sal_uInt16 nQuad = 0; nQuad < 4; nQuad++) { switch ( nQuad ) { case 0: aCenter = rRect.TopLeft(); aCenter.X() -= nRx; aCenter.Y() += nRy; break; case 1: aCenter = rRect.TopRight(); aCenter.X() += nRx; aCenter.Y() += nRy; break; case 2: aCenter = rRect.BottomRight(); aCenter.X() += nRx; aCenter.Y() -= nRy; break; case 3: aCenter = rRect.BottomLeft(); aCenter.X() -= nRx; aCenter.Y() -= nRy; break; } GenBezArc(aCenter, nRx, nRy, nXHdl, nYHdl, 0, 900, nQuad, nPos); pImpXPolygon->pFlagAry[nPos ] = PolyFlags::Smooth; pImpXPolygon->pFlagAry[nPos+3] = PolyFlags::Smooth; nPos += 4; } } else { pImpXPolygon->pPointAry[nPos++] = rRect.TopLeft(); pImpXPolygon->pPointAry[nPos++] = rRect.TopRight(); pImpXPolygon->pPointAry[nPos++] = rRect.BottomRight(); pImpXPolygon->pPointAry[nPos++] = rRect.BottomLeft(); } pImpXPolygon->pPointAry[nPos] = pImpXPolygon->pPointAry[0]; pImpXPolygon->nPoints = nPos + 1; } /// create a ellipse (curve) as Bézier polygon XPolygon::XPolygon(const Point& rCenter, long nRx, long nRy, sal_uInt16 nStartAngle, sal_uInt16 nEndAngle, bool bClose) : pImpXPolygon( 17 ) { nStartAngle %= 3600; if ( nEndAngle > 3600 ) nEndAngle %= 3600; bool bFull = (nStartAngle == 0 && nEndAngle == 3600); // factor for control points of the Bézier curve: 8/3 * (sin(45g) - 0.5) long nXHdl = (long)(0.552284749 * nRx); long nYHdl = (long)(0.552284749 * nRy); sal_uInt16 nPos = 0; bool bLoopEnd = false; do { sal_uInt16 nA1, nA2; sal_uInt16 nQuad = nStartAngle / 900; if ( nQuad == 4 ) nQuad = 0; bLoopEnd = CheckAngles(nStartAngle, nEndAngle, nA1, nA2); GenBezArc(rCenter, nRx, nRy, nXHdl, nYHdl, nA1, nA2, nQuad, nPos); nPos += 3; if ( !bLoopEnd ) pImpXPolygon->pFlagAry[nPos] = PolyFlags::Smooth; } while ( !bLoopEnd ); // if not a full circle than connect edges with center point if necessary if ( !bFull && bClose ) pImpXPolygon->pPointAry[++nPos] = rCenter; if ( bFull ) { pImpXPolygon->pFlagAry[0 ] = PolyFlags::Smooth; pImpXPolygon->pFlagAry[nPos] = PolyFlags::Smooth; } pImpXPolygon->nPoints = nPos + 1; } XPolygon::~XPolygon() { } void XPolygon::SetPointCount( sal_uInt16 nPoints ) { pImpXPolygon->CheckPointDelete(); if( pImpXPolygon->nSize < nPoints ) pImpXPolygon->Resize( nPoints ); if ( nPoints < pImpXPolygon->nPoints ) { sal_uInt16 nSize = pImpXPolygon->nPoints - nPoints; memset( &pImpXPolygon->pPointAry[nPoints], 0, nSize * sizeof( Point ) ); memset( &pImpXPolygon->pFlagAry [nPoints], 0, nSize ); } pImpXPolygon->nPoints = nPoints; } sal_uInt16 XPolygon::GetSize() const { pImpXPolygon->CheckPointDelete(); return pImpXPolygon->nSize; } sal_uInt16 XPolygon::GetPointCount() const { pImpXPolygon->CheckPointDelete(); return pImpXPolygon->nPoints; } void XPolygon::Insert( sal_uInt16 nPos, const Point& rPt, PolyFlags eFlags ) { if (nPos>pImpXPolygon->nPoints) nPos=pImpXPolygon->nPoints; pImpXPolygon->InsertSpace( nPos, 1 ); pImpXPolygon->pPointAry[nPos] = rPt; pImpXPolygon->pFlagAry[nPos] = eFlags; } void XPolygon::Insert( sal_uInt16 nPos, const XPolygon& rXPoly ) { if (nPos>pImpXPolygon->nPoints) nPos=pImpXPolygon->nPoints; sal_uInt16 nPoints = rXPoly.GetPointCount(); pImpXPolygon->InsertSpace( nPos, nPoints ); memcpy( &(pImpXPolygon->pPointAry[nPos]), rXPoly.pImpXPolygon->pPointAry, nPoints*sizeof( Point ) ); memcpy( &(pImpXPolygon->pFlagAry[nPos]), rXPoly.pImpXPolygon->pFlagAry.get(), nPoints ); } void XPolygon::Remove( sal_uInt16 nPos, sal_uInt16 nCount ) { pImpXPolygon->Remove( nPos, nCount ); } void XPolygon::Move( long nHorzMove, long nVertMove ) { if ( !nHorzMove && !nVertMove ) return; // move points sal_uInt16 nCount = pImpXPolygon->nPoints; for ( sal_uInt16 i = 0; i < nCount; i++ ) { Point* pPt = &(pImpXPolygon->pPointAry[i]); pPt->X() += nHorzMove; pPt->Y() += nVertMove; } } tools::Rectangle XPolygon::GetBoundRect() const { pImpXPolygon->CheckPointDelete(); tools::Rectangle aRetval; if(pImpXPolygon->nPoints) { // #i37709# // For historical reasons the control points are not part of the // BoundRect. This makes it necessary to subdivide the polygon to // get a relatively correct BoundRect. Numerically, this is not // correct and never was. const basegfx::B2DRange aPolygonRange(basegfx::tools::getRange(getB2DPolygon())); aRetval = tools::Rectangle( FRound(aPolygonRange.getMinX()), FRound(aPolygonRange.getMinY()), FRound(aPolygonRange.getMaxX()), FRound(aPolygonRange.getMaxY())); } return aRetval; } const Point& XPolygon::operator[]( sal_uInt16 nPos ) const { DBG_ASSERT(nPos < pImpXPolygon->nPoints, "Invalid index at const array access to XPolygon"); pImpXPolygon->CheckPointDelete(); return pImpXPolygon->pPointAry[nPos]; } Point& XPolygon::operator[]( sal_uInt16 nPos ) { pImpXPolygon->CheckPointDelete(); if( nPos >= pImpXPolygon->nSize ) { DBG_ASSERT(pImpXPolygon->nResize, "Invalid index at array access to XPolygon"); pImpXPolygon->Resize(nPos + 1, false); } if( nPos >= pImpXPolygon->nPoints ) pImpXPolygon->nPoints = nPos + 1; return pImpXPolygon->pPointAry[nPos]; } XPolygon& XPolygon::operator=( const XPolygon& rXPoly ) { pImpXPolygon = rXPoly.pImpXPolygon; return *this; } XPolygon& XPolygon::operator=( XPolygon&& rXPoly ) { pImpXPolygon = std::move(rXPoly.pImpXPolygon); return *this; } bool XPolygon::operator==( const XPolygon& rXPoly ) const { pImpXPolygon->CheckPointDelete(); return rXPoly.pImpXPolygon == pImpXPolygon; } /// get the flags for the point at the given position PolyFlags XPolygon::GetFlags( sal_uInt16 nPos ) const { pImpXPolygon->CheckPointDelete(); return pImpXPolygon->pFlagAry[nPos]; } /// set the flags for the point at the given position void XPolygon::SetFlags( sal_uInt16 nPos, PolyFlags eFlags ) { pImpXPolygon->CheckPointDelete(); pImpXPolygon->pFlagAry[nPos] = eFlags; } /// short path to read the CONTROL flag directly (TODO: better explain what the sense behind this flag is!) bool XPolygon::IsControl(sal_uInt16 nPos) const { return pImpXPolygon->pFlagAry[nPos] == PolyFlags::Control; } /// short path to read the SMOOTH and SYMMTR flag directly (TODO: better explain what the sense behind these flags is!) bool XPolygon::IsSmooth(sal_uInt16 nPos) const { PolyFlags eFlag = pImpXPolygon->pFlagAry[nPos]; return ( eFlag == PolyFlags::Smooth || eFlag == PolyFlags::Symmetric ); } /** calculate the euclidean distance between two points * * @param nP1 The first point * @param nP2 The second point */ double XPolygon::CalcDistance(sal_uInt16 nP1, sal_uInt16 nP2) { const Point& rP1 = pImpXPolygon->pPointAry[nP1]; const Point& rP2 = pImpXPolygon->pPointAry[nP2]; double fDx = rP2.X() - rP1.X(); double fDy = rP2.Y() - rP1.Y(); return sqrt(fDx * fDx + fDy * fDy); } void XPolygon::SubdivideBezier(sal_uInt16 nPos, bool bCalcFirst, double fT) { Point* pPoints = pImpXPolygon->pPointAry; double fT2 = fT * fT; double fT3 = fT * fT2; double fU = 1.0 - fT; double fU2 = fU * fU; double fU3 = fU * fU2; sal_uInt16 nIdx = nPos; short nPosInc, nIdxInc; if ( bCalcFirst ) { nPos += 3; nPosInc = -1; nIdxInc = 0; } else { nPosInc = 1; nIdxInc = 1; } pPoints[nPos].X() = (long) (fU3 * pPoints[nIdx ].X() + fT * fU2 * pPoints[nIdx+1].X() * 3 + fT2 * fU * pPoints[nIdx+2].X() * 3 + fT3 * pPoints[nIdx+3].X()); pPoints[nPos].Y() = (long) (fU3 * pPoints[nIdx ].Y() + fT * fU2 * pPoints[nIdx+1].Y() * 3 + fT2 * fU * pPoints[nIdx+2].Y() * 3 + fT3 * pPoints[nIdx+3].Y()); nPos = nPos + nPosInc; nIdx = nIdx + nIdxInc; pPoints[nPos].X() = (long) (fU2 * pPoints[nIdx ].X() + fT * fU * pPoints[nIdx+1].X() * 2 + fT2 * pPoints[nIdx+2].X()); pPoints[nPos].Y() = (long) (fU2 * pPoints[nIdx ].Y() + fT * fU * pPoints[nIdx+1].Y() * 2 + fT2 * pPoints[nIdx+2].Y()); nPos = nPos + nPosInc; nIdx = nIdx + nIdxInc; pPoints[nPos].X() = (long) (fU * pPoints[nIdx ].X() + fT * pPoints[nIdx+1].X()); pPoints[nPos].Y() = (long) (fU * pPoints[nIdx ].Y() + fT * pPoints[nIdx+1].Y()); } /// Generate a Bézier arc void XPolygon::GenBezArc(const Point& rCenter, long nRx, long nRy, long nXHdl, long nYHdl, sal_uInt16 nStart, sal_uInt16 nEnd, sal_uInt16 nQuad, sal_uInt16 nFirst) { Point* pPoints = pImpXPolygon->pPointAry; pPoints[nFirst ] = rCenter; pPoints[nFirst+3] = rCenter; if ( nQuad == 1 || nQuad == 2 ) { nRx = -nRx; nXHdl = -nXHdl; } if ( nQuad == 0 || nQuad == 1 ) { nRy = -nRy; nYHdl = -nYHdl; } if ( nQuad == 0 || nQuad == 2 ) { pPoints[nFirst].X() += nRx; pPoints[nFirst+3].Y() += nRy; } else { pPoints[nFirst].Y() += nRy; pPoints[nFirst+3].X() += nRx; } pPoints[nFirst+1] = pPoints[nFirst]; pPoints[nFirst+2] = pPoints[nFirst+3]; if ( nQuad == 0 || nQuad == 2 ) { pPoints[nFirst+1].Y() += nYHdl; pPoints[nFirst+2].X() += nXHdl; } else { pPoints[nFirst+1].X() += nXHdl; pPoints[nFirst+2].Y() += nYHdl; } if ( nStart > 0 ) SubdivideBezier(nFirst, false, (double)nStart / 900); if ( nEnd < 900 ) SubdivideBezier(nFirst, true, (double)(nEnd-nStart) / (900-nStart)); SetFlags(nFirst+1, PolyFlags::Control); SetFlags(nFirst+2, PolyFlags::Control); } bool XPolygon::CheckAngles(sal_uInt16& nStart, sal_uInt16 nEnd, sal_uInt16& nA1, sal_uInt16& nA2) { if ( nStart == 3600 ) nStart = 0; if ( nEnd == 0 ) nEnd = 3600; sal_uInt16 nStPrev = nStart; sal_uInt16 nMax = (nStart / 900 + 1) * 900; sal_uInt16 nMin = nMax - 900; if ( nEnd >= nMax || nEnd <= nStart ) nA2 = 900; else nA2 = nEnd - nMin; nA1 = nStart - nMin; nStart = nMax; // returns true when the last segment was calculated return (nStPrev < nEnd && nStart >= nEnd); } /** Calculate a smooth transition to connect two Bézier curves * * This is done by projecting the corresponding point onto a line between * two other points. * * @param nCenter The point at the end or beginning of the curve. * If nCenter is at the end of the polygon the point is moved * to the opposite side. * @param nDrag The moved point that specifies the relocation. * @param nPnt The point to modify. */ void XPolygon::CalcSmoothJoin(sal_uInt16 nCenter, sal_uInt16 nDrag, sal_uInt16 nPnt) { // If nPoint is no control point, i.e. cannot be moved, than // move nDrag instead on the line between nCenter and nPnt if ( !IsControl(nPnt) ) { sal_uInt16 nTmp = nDrag; nDrag = nPnt; nPnt = nTmp; } Point* pPoints = pImpXPolygon->pPointAry; Point aDiff = pPoints[nDrag] - pPoints[nCenter]; double fDiv = CalcDistance(nCenter, nDrag); if ( fDiv ) { double fRatio = CalcDistance(nCenter, nPnt) / fDiv; // keep the length if SMOOTH if ( GetFlags(nCenter) == PolyFlags::Smooth || !IsControl(nDrag) ) { aDiff.X() = (long) (fRatio * aDiff.X()); aDiff.Y() = (long) (fRatio * aDiff.Y()); } pPoints[nPnt] = pPoints[nCenter] - aDiff; } } /** Calculate tangent between two Bézier curves * * @param nCenter start or end point of the curves * @param nPrev previous reference point * @param nNext next reference point */ void XPolygon::CalcTangent(sal_uInt16 nCenter, sal_uInt16 nPrev, sal_uInt16 nNext) { double fAbsLen = CalcDistance(nNext, nPrev); if ( fAbsLen ) { const Point& rCenter = pImpXPolygon->pPointAry[nCenter]; Point& rNext = pImpXPolygon->pPointAry[nNext]; Point& rPrev = pImpXPolygon->pPointAry[nPrev]; Point aDiff = rNext - rPrev; double fNextLen = CalcDistance(nCenter, nNext) / fAbsLen; double fPrevLen = CalcDistance(nCenter, nPrev) / fAbsLen; // same length for both sides if SYMMTR if ( GetFlags(nCenter) == PolyFlags::Symmetric ) { fPrevLen = (fNextLen + fPrevLen) / 2; fNextLen = fPrevLen; } rNext.X() = rCenter.X() + (long) (fNextLen * aDiff.X()); rNext.Y() = rCenter.Y() + (long) (fNextLen * aDiff.Y()); rPrev.X() = rCenter.X() - (long) (fPrevLen * aDiff.X()); rPrev.Y() = rCenter.Y() - (long) (fPrevLen * aDiff.Y()); } } /// convert four polygon points into a Bézier curve void XPolygon::PointsToBezier(sal_uInt16 nFirst) { double nFullLength, nPart1Length, nPart2Length; double fX0, fY0, fX1, fY1, fX2, fY2, fX3, fY3; double fTx1, fTx2, fTy1, fTy2; double fT1, fU1, fT2, fU2, fV; Point* pPoints = pImpXPolygon->pPointAry; if ( nFirst > pImpXPolygon->nPoints - 4 || IsControl(nFirst) || IsControl(nFirst+1) || IsControl(nFirst+2) || IsControl(nFirst+3) ) return; fTx1 = pPoints[nFirst+1].X(); fTy1 = pPoints[nFirst+1].Y(); fTx2 = pPoints[nFirst+2].X(); fTy2 = pPoints[nFirst+2].Y(); fX0 = pPoints[nFirst ].X(); fY0 = pPoints[nFirst ].Y(); fX3 = pPoints[nFirst+3].X(); fY3 = pPoints[nFirst+3].Y(); nPart1Length = CalcDistance(nFirst, nFirst+1); nPart2Length = nPart1Length + CalcDistance(nFirst+1, nFirst+2); nFullLength = nPart2Length + CalcDistance(nFirst+2, nFirst+3); if ( nFullLength < 20 ) return; if ( nPart2Length == nFullLength ) nPart2Length -= 1; if ( nPart1Length == nFullLength ) nPart1Length = nPart2Length - 1; if ( nPart1Length <= 0 ) nPart1Length = 1; if ( nPart2Length <= 0 || nPart2Length == nPart1Length ) nPart2Length = nPart1Length + 1; fT1 = nPart1Length / nFullLength; fU1 = 1.0 - fT1; fT2 = nPart2Length / nFullLength; fU2 = 1.0 - fT2; fV = 3 * (1.0 - (fT1 * fU2) / (fT2 * fU1)); fX1 = fTx1 / (fT1 * fU1 * fU1) - fTx2 * fT1 / (fT2 * fT2 * fU1 * fU2); fX1 /= fV; fX1 -= fX0 * ( fU1 / fT1 + fU2 / fT2) / 3; fX1 += fX3 * ( fT1 * fT2 / (fU1 * fU2)) / 3; fY1 = fTy1 / (fT1 * fU1 * fU1) - fTy2 * fT1 / (fT2 * fT2 * fU1 * fU2); fY1 /= fV; fY1 -= fY0 * ( fU1 / fT1 + fU2 / fT2) / 3; fY1 += fY3 * ( fT1 * fT2 / (fU1 * fU2)) / 3; fX2 = fTx2 / (fT2 * fT2 * fU2 * 3) - fX0 * fU2 * fU2 / ( fT2 * fT2 * 3); fX2 -= fX1 * fU2 / fT2; fX2 -= fX3 * fT2 / (fU2 * 3); fY2 = fTy2 / (fT2 * fT2 * fU2 * 3) - fY0 * fU2 * fU2 / ( fT2 * fT2 * 3); fY2 -= fY1 * fU2 / fT2; fY2 -= fY3 * fT2 / (fU2 * 3); pPoints[nFirst+1] = Point((long) fX1, (long) fY1); pPoints[nFirst+2] = Point((long) fX2, (long) fY2); SetFlags(nFirst+1, PolyFlags::Control); SetFlags(nFirst+2, PolyFlags::Control); } /// scale in X- and/or Y-direction void XPolygon::Scale(double fSx, double fSy) { pImpXPolygon->CheckPointDelete(); sal_uInt16 nPntCnt = pImpXPolygon->nPoints; for (sal_uInt16 i = 0; i < nPntCnt; i++) { Point& rPnt = pImpXPolygon->pPointAry[i]; rPnt.X() = (long)(fSx * rPnt.X()); rPnt.Y() = (long)(fSy * rPnt.Y()); } } /** * Distort a polygon by scaling its coordinates relative to a reference * rectangle into an arbitrary rectangle. * * Mapping between polygon corners and reference rectangle: * 0: top left 0----1 * 1: top right | | * 2: bottom right 3----2 * 3: bottom left */ void XPolygon::Distort(const tools::Rectangle& rRefRect, const XPolygon& rDistortedRect) { pImpXPolygon->CheckPointDelete(); long Xr, Wr; long Yr, Hr; Xr = rRefRect.Left(); Yr = rRefRect.Top(); Wr = rRefRect.GetWidth(); Hr = rRefRect.GetHeight(); if ( Wr && Hr ) { long X1, X2, X3, X4; long Y1, Y2, Y3, Y4; DBG_ASSERT(rDistortedRect.pImpXPolygon->nPoints >= 4, "Distort: rectangle to small"); X1 = rDistortedRect[0].X(); Y1 = rDistortedRect[0].Y(); X2 = rDistortedRect[1].X(); Y2 = rDistortedRect[1].Y(); X3 = rDistortedRect[3].X(); Y3 = rDistortedRect[3].Y(); X4 = rDistortedRect[2].X(); Y4 = rDistortedRect[2].Y(); sal_uInt16 nPntCnt = pImpXPolygon->nPoints; for (sal_uInt16 i = 0; i < nPntCnt; i++) { double fTx, fTy, fUx, fUy; Point& rPnt = pImpXPolygon->pPointAry[i]; fTx = (double)(rPnt.X() - Xr) / Wr; fTy = (double)(rPnt.Y() - Yr) / Hr; fUx = 1.0 - fTx; fUy = 1.0 - fTy; rPnt.X() = (long) ( fUy * (fUx * X1 + fTx * X2) + fTy * (fUx * X3 + fTx * X4) ); rPnt.Y() = (long) ( fUx * (fUy * Y1 + fTy * Y3) + fTx * (fUy * Y2 + fTy * Y4) ); } } } basegfx::B2DPolygon XPolygon::getB2DPolygon() const { // #i74631# use tools Polygon class for conversion to not have the code doubled // here. This needs one more conversion but avoids different convertors in // the long run const tools::Polygon aSource(GetPointCount(), pImpXPolygon->pPointAry, pImpXPolygon->pFlagAry.get()); return aSource.getB2DPolygon(); } XPolygon::XPolygon(const basegfx::B2DPolygon& rPolygon) : pImpXPolygon( tools::Polygon( rPolygon ).GetSize() ) { // #i74631# use tools Polygon class for conversion to not have the code doubled // here. This needs one more conversion but avoids different convertors in // the long run const tools::Polygon aSource(rPolygon); sal_uInt16 nSize = aSource.GetSize(); pImpXPolygon->nPoints = nSize; for( sal_uInt16 i = 0; i < nSize; i++ ) { pImpXPolygon->pPointAry[i] = aSource[i]; pImpXPolygon->pFlagAry[i] = aSource.GetFlags( i ); } } // XPolyPolygon ImpXPolyPolygon::ImpXPolyPolygon( const ImpXPolyPolygon& rImpXPolyPoly ) : aXPolyList( rImpXPolyPoly.aXPolyList ) { // duplicate elements for (XPolygon*& rp : aXPolyList) rp = new XPolygon( *rp ); } ImpXPolyPolygon::~ImpXPolyPolygon() { for (XPolygon* p : aXPolyList) delete p; aXPolyList.clear(); } XPolyPolygon::XPolyPolygon() : pImpXPolyPolygon() { } XPolyPolygon::XPolyPolygon( const XPolyPolygon& rXPolyPoly ) : pImpXPolyPolygon( rXPolyPoly.pImpXPolyPolygon ) { } XPolyPolygon::XPolyPolygon( XPolyPolygon&& rXPolyPoly ) : pImpXPolyPolygon( std::move(rXPolyPoly.pImpXPolyPolygon) ) { } XPolyPolygon::XPolyPolygon(const basegfx::B2DPolyPolygon& rPolyPolygon) : pImpXPolyPolygon() { for(sal_uInt32 a(0L); a < rPolyPolygon.count(); a++) { const basegfx::B2DPolygon aCandidate = rPolyPolygon.getB2DPolygon(a); XPolygon aNewPoly(aCandidate); Insert(aNewPoly); } } XPolyPolygon::~XPolyPolygon() { } void XPolyPolygon::Insert( const XPolygon& rXPoly ) { XPolygon* pXPoly = new XPolygon( rXPoly ); pImpXPolyPolygon->aXPolyList.push_back( pXPoly ); } /// insert all XPolygons of a XPolyPolygon void XPolyPolygon::Insert( const XPolyPolygon& rXPolyPoly ) { for ( size_t i = 0; i < rXPolyPoly.Count(); i++) { XPolygon* pXPoly = new XPolygon( rXPolyPoly[i] ); pImpXPolyPolygon->aXPolyList.push_back( pXPoly ); } } XPolygon XPolyPolygon::Remove( sal_uInt16 nPos ) { XPolygonList::iterator it = pImpXPolyPolygon->aXPolyList.begin(); ::std::advance( it, nPos ); XPolygon* pTmpXPoly = *it; pImpXPolyPolygon->aXPolyList.erase( it ); XPolygon aXPoly( *pTmpXPoly ); delete pTmpXPoly; return aXPoly; } const XPolygon& XPolyPolygon::GetObject( sal_uInt16 nPos ) const { return *(pImpXPolyPolygon->aXPolyList[ nPos ]); } void XPolyPolygon::Clear() { for(XPolygon* p : pImpXPolyPolygon->aXPolyList) delete p; pImpXPolyPolygon->aXPolyList.clear(); } sal_uInt16 XPolyPolygon::Count() const { return (sal_uInt16)(pImpXPolyPolygon->aXPolyList.size()); } tools::Rectangle XPolyPolygon::GetBoundRect() const { size_t nXPoly = pImpXPolyPolygon->aXPolyList.size(); tools::Rectangle aRect; for ( size_t n = 0; n < nXPoly; n++ ) { const XPolygon* pXPoly = pImpXPolyPolygon->aXPolyList[ n ]; aRect.Union( pXPoly->GetBoundRect() ); } return aRect; } XPolygon& XPolyPolygon::operator[]( sal_uInt16 nPos ) { return *( pImpXPolyPolygon->aXPolyList[ nPos ] ); } XPolyPolygon& XPolyPolygon::operator=( const XPolyPolygon& rXPolyPoly ) { pImpXPolyPolygon = rXPolyPoly.pImpXPolyPolygon; return *this; } XPolyPolygon& XPolyPolygon::operator=( XPolyPolygon&& rXPolyPoly ) { pImpXPolyPolygon = std::move(rXPolyPoly.pImpXPolyPolygon); return *this; } /** * Distort a polygon by scaling its coordinates relative to a reference * rectangle into an arbitrary rectangle. * * Mapping between polygon corners and reference rectangle: * 0: top left 0----1 * 1: top right | | * 2: bottom right 3----2 * 3: bottom left */ void XPolyPolygon::Distort(const tools::Rectangle& rRefRect, const XPolygon& rDistortedRect) { for (size_t i = 0; i < Count(); i++) pImpXPolyPolygon->aXPolyList[ i ]->Distort(rRefRect, rDistortedRect); } basegfx::B2DPolyPolygon XPolyPolygon::getB2DPolyPolygon() const { basegfx::B2DPolyPolygon aRetval; for(sal_uInt16 a(0L); a < Count(); a++) { const XPolygon& rPoly = (*this)[a]; aRetval.append(rPoly.getB2DPolygon()); } return aRetval; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */