/************************************************************************* * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: bigint.cxx,v $ * * $Revision: 1.7 $ * * last change: $Author: hr $ $Date: 2007-06-27 22:12:50 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. * * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2005 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_tools.hxx" #include #include #include #ifndef _STRING_HXX #include #endif #ifndef _DEBUG_HXX #include #endif #include #include static const long MY_MAXLONG = 0x3fffffff; static const long MY_MINLONG = -MY_MAXLONG; static const long MY_MAXSHORT = 0x00007fff; static const long MY_MINSHORT = -MY_MAXSHORT; /* Die ganzen Algorithmen zur Addition, Subtraktion, Multiplikation und * Division von langen Zahlen stammen aus SEMINUMERICAL ALGORITHMS von * DONALD E. KNUTH aus der Reihe The Art of Computer Programming. Zu finden * sind diese Algorithmen im Kapitel 4.3.1. The Classical Algorithms. */ // Muss auf UINT16/INT16/UINT32/INT32 umgestellt werden !!! W.P. // ----------------------------------------------------------------------- void BigInt::MakeBigInt( const BigInt& rVal ) { if ( rVal.bIsBig ) { memcpy( (void*)this, (const void*)&rVal, sizeof( BigInt ) ); while ( nLen > 1 && nNum[nLen-1] == 0 ) nLen--; } else { long nTmp = rVal.nVal; nVal = rVal.nVal; bIsBig = sal_True; if ( nTmp < 0 ) { bIsNeg = sal_True; nTmp = -nTmp; } else bIsNeg = sal_False; nNum[0] = (sal_uInt16)(nTmp & 0xffffL); nNum[1] = (sal_uInt16)(nTmp >> 16); #ifndef _WIN16 if ( nTmp & 0xffff0000L ) #else long l = 0xffff0000L; if ( nTmp & l ) #endif nLen = 2; else nLen = 1; } } // ----------------------------------------------------------------------- void BigInt::Normalize() { if ( bIsBig ) { while ( nLen > 1 && nNum[nLen-1] == 0 ) nLen--; if ( nLen < 3 ) { if ( nLen < 2 ) nVal = nNum[0]; else if ( nNum[1] & 0x8000 ) return; else nVal = ((long)nNum[1] << 16) + nNum[0]; bIsBig = sal_False; if ( bIsNeg ) nVal = -nVal; } // else ist nVal undefiniert !!! W.P. } // wozu, nLen ist doch undefiniert ??? W.P. else if ( nVal & 0xFFFF0000L ) nLen = 2; else nLen = 1; } // ----------------------------------------------------------------------- void BigInt::Mult( const BigInt &rVal, sal_uInt16 nMul ) { sal_uInt16 nK = 0; for ( int i = 0; i < rVal.nLen; i++ ) { sal_uInt32 nTmp = (sal_uInt32)rVal.nNum[i] * (sal_uInt32)nMul + nK; nK = (sal_uInt16)(nTmp >> 16); nNum[i] = (sal_uInt16)nTmp; } if ( nK ) { nNum[rVal.nLen] = nK; nLen = rVal.nLen + 1; } else nLen = rVal.nLen; bIsBig = sal_True; bIsNeg = rVal.bIsNeg; } // ----------------------------------------------------------------------- void BigInt::Div( sal_uInt16 nDiv, sal_uInt16& rRem ) { sal_uInt32 nK = 0; for ( int i = nLen - 1; i >= 0; i-- ) { sal_uInt32 nTmp = (sal_uInt32)nNum[i] + (nK << 16); nNum[i] = (sal_uInt16)(nTmp / nDiv); nK = nTmp % nDiv; } rRem = (sal_uInt16)nK; if ( nNum[nLen-1] == 0 ) nLen -= 1; } // ----------------------------------------------------------------------- sal_Bool BigInt::IsLess( const BigInt& rVal ) const { if ( rVal.nLen < nLen) return sal_True; if ( rVal.nLen > nLen ) return sal_False; int i; for ( i = nLen - 1; i > 0 && nNum[i] == rVal.nNum[i]; i-- ) { } return rVal.nNum[i] < nNum[i]; } // ----------------------------------------------------------------------- void BigInt::AddLong( BigInt& rB, BigInt& rErg ) { if ( bIsNeg == rB.bIsNeg ) { int i; char len; // wenn die Zahlen unterschiedlich lang sind, sollte zunaechst bei // der kleineren Zahl die fehlenden Ziffern mit 0 initialisert werden if (nLen >= rB.nLen) { len = nLen; for (i = rB.nLen; i < len; i++) rB.nNum[i] = 0; } else { len = rB.nLen; for (i = nLen; i < len; i++) nNum[i] = 0; } // Die Ziffern werden von hinten nach vorne addiert long k; long nZ = 0; for (i = 0, k = 0; i < len; i++) { nZ = (long)nNum[i] + (long)rB.nNum[i] + k; if (nZ & 0xff0000L) k = 1; else k = 0; rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL); } // Trat nach der letzten Addition ein Ueberlauf auf, muss dieser // noch ins Ergebis uebernommen werden if (nZ & 0xff0000L) // oder if(k) { rErg.nNum[i] = 1; len++; } // Die Laenge und das Vorzeichen setzen rErg.nLen = len; rErg.bIsNeg = bIsNeg && rB.bIsNeg; rErg.bIsBig = sal_True; } // Wenn nur einer der beiden Operanten negativ ist, wird aus der // Addition eine Subtaktion else if (bIsNeg) { bIsNeg = sal_False; rB.SubLong(*this, rErg); bIsNeg = sal_True; } else { rB.bIsNeg = sal_False; SubLong(rB, rErg); rB.bIsNeg = sal_True; } } // ----------------------------------------------------------------------- void BigInt::SubLong( BigInt& rB, BigInt& rErg ) { if ( bIsNeg == rB.bIsNeg ) { int i; char len; long nZ, k; // wenn die Zahlen unterschiedlich lang sind, sollte zunaechst bei // der kleineren Zahl die fehlenden Ziffern mit 0 initialisert werden if (nLen >= rB.nLen) { len = nLen; for (i = rB.nLen; i < len; i++) rB.nNum[i] = 0; } else { len = rB.nLen; for (i = nLen; i < len; i++) nNum[i] = 0; } if ( IsLess(rB) ) { for (i = 0, k = 0; i < len; i++) { nZ = (long)nNum[i] - (long)rB.nNum[i] + k; if (nZ < 0) k = -1; else k = 0; rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL); } rErg.bIsNeg = bIsNeg; } else { for (i = 0, k = 0; i < len; i++) { nZ = (long)rB.nNum[i] - (long)nNum[i] + k; if (nZ < 0) k = -1; else k = 0; rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL); } // wenn a < b, dann Vorzeichen vom Ergebnis umdrehen rErg.bIsNeg = !bIsNeg; } rErg.nLen = len; rErg.bIsBig = sal_True; } // Wenn nur einer der beiden Operanten negativ ist, wird aus der // Subtaktion eine Addition else if (bIsNeg) { bIsNeg = sal_False; AddLong(rB, rErg); bIsNeg = sal_True; rErg.bIsNeg = sal_True; } else { rB.bIsNeg = sal_False; AddLong(rB, rErg); rB.bIsNeg = sal_True; rErg.bIsNeg = sal_False; } } // ----------------------------------------------------------------------- void BigInt::MultLong( const BigInt& rB, BigInt& rErg ) const { int i, j; sal_uInt32 nZ, k; rErg.bIsNeg = bIsNeg != rB.bIsNeg; rErg.bIsBig = sal_True; rErg.nLen = nLen + rB.nLen; for (i = 0; i < rErg.nLen; i++) rErg.nNum[i] = 0; for (j = 0; j < rB.nLen; j++) { for (i = 0, k = 0; i < nLen; i++) { nZ = (sal_uInt32)nNum[i] * (sal_uInt32)rB.nNum[j] + (sal_uInt32)rErg.nNum[i + j] + k; rErg.nNum[i + j] = (sal_uInt16)(nZ & 0xffffUL); k = nZ >> 16; } rErg.nNum[i + j] = (sal_uInt16)k; } } // ----------------------------------------------------------------------- void BigInt::DivLong( const BigInt& rB, BigInt& rErg ) const { int i, j; long nTmp; sal_uInt16 nK, nQ, nMult; short nLenB = rB.nLen; short nLenB1 = rB.nLen - 1; BigInt aTmpA, aTmpB; nMult = (sal_uInt16)(0x10000L / ((long)rB.nNum[nLenB1] + 1)); aTmpA.Mult( *this, nMult ); if ( aTmpA.nLen == nLen ) { aTmpA.nNum[aTmpA.nLen] = 0; aTmpA.nLen++; } aTmpB.Mult( rB, nMult ); for (j = aTmpA.nLen - 1; j >= nLenB; j--) { // Raten des Divisors nTmp = ( (long)aTmpA.nNum[j] << 16 ) + aTmpA.nNum[j - 1]; if (aTmpA.nNum[j] == aTmpB.nNum[nLenB1]) nQ = 0xFFFF; else nQ = (sal_uInt16)(((sal_uInt32)nTmp) / aTmpB.nNum[nLenB1]); if ( ((sal_uInt32)aTmpB.nNum[nLenB1 - 1] * nQ) > ((((sal_uInt32)nTmp) - aTmpB.nNum[nLenB1] * nQ) << 16) + aTmpA.nNum[j - 2]) nQ--; // Und hier faengt das Teilen an nK = 0; nTmp = 0; for (i = 0; i < nLenB; i++) { nTmp = (long)aTmpA.nNum[j - nLenB + i] - ((long)aTmpB.nNum[i] * nQ) - nK; aTmpA.nNum[j - nLenB + i] = (sal_uInt16)nTmp; nK = (sal_uInt16) (nTmp >> 16); if ( nK ) nK = (sal_uInt16)(0x10000UL - nK); } unsigned short& rNum( aTmpA.nNum[j - nLenB + i] ); rNum = rNum - nK; // MSVC yields a warning on -= here, so don't use it if (aTmpA.nNum[j - nLenB + i] == 0) rErg.nNum[j - nLenB] = nQ; else { rErg.nNum[j - nLenB] = nQ - 1; nK = 0; for (i = 0; i < nLenB; i++) { nTmp = aTmpA.nNum[j - nLenB + i] + aTmpB.nNum[i] + nK; aTmpA.nNum[j - nLenB + i] = (sal_uInt16)(nTmp & 0xFFFFL); if (nTmp & 0xFFFF0000L) nK = 1; else nK = 0; } } } rErg.bIsNeg = bIsNeg != rB.bIsNeg; rErg.bIsBig = sal_True; rErg.nLen = nLen - rB.nLen + 1; } // ----------------------------------------------------------------------- void BigInt::ModLong( const BigInt& rB, BigInt& rErg ) const { short i, j; long nTmp; sal_uInt16 nK, nQ, nMult; short nLenB = rB.nLen; short nLenB1 = rB.nLen - 1; BigInt aTmpA, aTmpB; nMult = (sal_uInt16)(0x10000L / ((long)rB.nNum[nLenB1] + 1)); aTmpA.Mult( *this, nMult); if ( aTmpA.nLen == nLen ) { aTmpA.nNum[aTmpA.nLen] = 0; aTmpA.nLen++; } aTmpB.Mult( rB, nMult); for (j = aTmpA.nLen - 1; j >= nLenB; j--) { // Raten des Divisors nTmp = ( (long)aTmpA.nNum[j] << 16 ) + aTmpA.nNum[j - 1]; if (aTmpA.nNum[j] == aTmpB.nNum[nLenB1]) nQ = 0xFFFF; else nQ = (sal_uInt16)(((sal_uInt32)nTmp) / aTmpB.nNum[nLenB1]); if ( ((sal_uInt32)aTmpB.nNum[nLenB1 - 1] * nQ) > ((((sal_uInt32)nTmp) - aTmpB.nNum[nLenB1] * nQ) << 16) + aTmpA.nNum[j - 2]) nQ--; // Und hier faengt das Teilen an nK = 0; nTmp = 0; for (i = 0; i < nLenB; i++) { nTmp = (long)aTmpA.nNum[j - nLenB + i] - ((long)aTmpB.nNum[i] * nQ) - nK; aTmpA.nNum[j - nLenB + i] = (sal_uInt16)nTmp; nK = (sal_uInt16) (nTmp >> 16); if ( nK ) nK = (sal_uInt16)(0x10000UL - nK); } unsigned short& rNum( aTmpA.nNum[j - nLenB + i] ); rNum = rNum - nK; if (aTmpA.nNum[j - nLenB + i] == 0) rErg.nNum[j - nLenB] = nQ; else { rErg.nNum[j - nLenB] = nQ - 1; nK = 0; for (i = 0; i < nLenB; i++) { nTmp = aTmpA.nNum[j - nLenB + i] + aTmpB.nNum[i] + nK; aTmpA.nNum[j - nLenB + i] = (sal_uInt16)(nTmp & 0xFFFFL); if (nTmp & 0xFFFF0000L) nK = 1; else nK = 0; } } } rErg = aTmpA; rErg.Div( nMult, nQ ); } // ----------------------------------------------------------------------- sal_Bool BigInt::ABS_IsLess( const BigInt& rB ) const { if (bIsBig || rB.bIsBig) { BigInt nA, nB; nA.MakeBigInt( *this ); nB.MakeBigInt( rB ); if (nA.nLen == nB.nLen) { int i; for (i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i--) { } return nA.nNum[i] < nB.nNum[i]; } else return nA.nLen < nB.nLen; } if ( nVal < 0 ) if ( rB.nVal < 0 ) return nVal > rB.nVal; else return nVal > -rB.nVal; else if ( rB.nVal < 0 ) return nVal < -rB.nVal; else return nVal < rB.nVal; } // ----------------------------------------------------------------------- BigInt::BigInt( const BigInt& rBigInt ) { if ( rBigInt.bIsBig ) memcpy( (void*)this, (const void*)&rBigInt, sizeof( BigInt ) ); else { bIsSet = rBigInt.bIsSet; bIsBig = sal_False; nVal = rBigInt.nVal; } } // ----------------------------------------------------------------------- BigInt::BigInt( const ByteString& rString ) { bIsSet = sal_True; bIsNeg = sal_False; bIsBig = sal_False; nVal = 0; sal_Bool bNeg = sal_False; const sal_Char* p = rString.GetBuffer(); if ( *p == '-' ) { bNeg = sal_True; p++; } while( *p >= '0' && *p <= '9' ) { *this *= 10; *this += *p - '0'; p++; } if ( bIsBig ) bIsNeg = bNeg; else if( bNeg ) nVal = -nVal; } // ----------------------------------------------------------------------- BigInt::BigInt( const UniString& rString ) { bIsSet = sal_True; bIsNeg = sal_False; bIsBig = sal_False; nVal = 0; sal_Bool bNeg = sal_False; const sal_Unicode* p = rString.GetBuffer(); if ( *p == '-' ) { bNeg = sal_True; p++; } while( *p >= '0' && *p <= '9' ) { *this *= 10; *this += *p - '0'; p++; } if ( bIsBig ) bIsNeg = bNeg; else if( bNeg ) nVal = -nVal; } // ----------------------------------------------------------------------- BigInt::BigInt( double nValue ) { bIsSet = sal_True; if ( nValue < 0 ) { nValue *= -1; bIsNeg = sal_True; } else { bIsNeg = sal_False; } if ( nValue < 1 ) { bIsBig = sal_False; nVal = 0; } else { bIsBig = sal_True; int i=0; while ( ( nValue > 65536.0 ) && ( i < MAX_DIGITS ) ) { nNum[i] = (sal_uInt16) fmod( nValue, 65536.0 ); nValue -= nNum[i]; nValue /= 65536.0; i++; } if ( i < MAX_DIGITS ) nNum[i++] = (sal_uInt16) nValue; nLen = i; if ( i < 3 ) Normalize(); } } // ----------------------------------------------------------------------- BigInt::BigInt( sal_uInt32 nValue ) { bIsSet = sal_True; if ( nValue & 0x80000000UL ) { bIsBig = sal_True; bIsNeg = sal_False; nNum[0] = (sal_uInt16)(nValue & 0xffffUL); nNum[1] = (sal_uInt16)(nValue >> 16); nLen = 2; } else { bIsBig = sal_False; nVal = nValue; } } // ----------------------------------------------------------------------- BigInt::operator ULONG() const { if ( !bIsBig ) return (sal_uInt32)nVal; else if ( nLen == 2 ) { sal_uInt32 nRet; nRet = ((sal_uInt32)nNum[1]) << 16; nRet += nNum[0]; return nRet; } return 0; } // ----------------------------------------------------------------------- BigInt::operator double() const { if ( !bIsBig ) return (double) nVal; else { int i = nLen-1; double nRet = (double) ((sal_uInt32)nNum[i]); while ( i ) { nRet *= 65536.0; i--; nRet += (double) ((sal_uInt32)nNum[i]); } if ( bIsNeg ) nRet *= -1; return nRet; } } // ----------------------------------------------------------------------- ByteString BigInt::GetByteString() const { ByteString aString; if ( !bIsBig ) aString = ByteString::CreateFromInt32( nVal ); else { BigInt aTmp( *this ); BigInt a1000000000( 1000000000L ); aTmp.Abs(); do { BigInt a = aTmp; a %= a1000000000; aTmp /= a1000000000; ByteString aStr = aString; if ( a.nVal < 100000000L ) { // leading 0s aString = ByteString::CreateFromInt32( a.nVal + 1000000000L ); aString.Erase( 0, 1 ); } else aString = ByteString::CreateFromInt32( a.nVal ); aString += aStr; } while( aTmp.bIsBig ); ByteString aStr = aString; if ( bIsNeg ) aString = ByteString::CreateFromInt32( -aTmp.nVal ); else aString = ByteString::CreateFromInt32( aTmp.nVal ); aString += aStr; } return aString; } // ----------------------------------------------------------------------- UniString BigInt::GetString() const { UniString aString; if ( !bIsBig ) aString = UniString::CreateFromInt32( nVal ); else { BigInt aTmp( *this ); BigInt a1000000000( 1000000000L ); aTmp.Abs(); do { BigInt a = aTmp; a %= a1000000000; aTmp /= a1000000000; UniString aStr = aString; if ( a.nVal < 100000000L ) { // leading 0s aString = UniString::CreateFromInt32( a.nVal + 1000000000L ); aString.Erase(0,1); } else aString = UniString::CreateFromInt32( a.nVal ); aString += aStr; } while( aTmp.bIsBig ); UniString aStr = aString; if ( bIsNeg ) aString = UniString::CreateFromInt32( -aTmp.nVal ); else aString = UniString::CreateFromInt32( aTmp.nVal ); aString += aStr; } return aString; } // ----------------------------------------------------------------------- BigInt& BigInt::operator=( const BigInt& rBigInt ) { if ( rBigInt.bIsBig ) memcpy( (void*)this, (const void*)&rBigInt, sizeof( BigInt ) ); else { bIsSet = rBigInt.bIsSet; bIsBig = sal_False; nVal = rBigInt.nVal; } return *this; } // ----------------------------------------------------------------------- BigInt& BigInt::operator+=( const BigInt& rVal ) { if ( !bIsBig && !rVal.bIsBig ) { if( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG && nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG ) { // wir bewegen uns im ungefaehrlichem Bereich nVal += rVal.nVal; return *this; } if( (nVal < 0) != (rVal.nVal < 0) ) { // wir bewegen uns im ungefaehrlichem Bereich nVal += rVal.nVal; return *this; } } BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( *this ); aTmp2.MakeBigInt( rVal ); aTmp1.AddLong( aTmp2, *this ); Normalize(); return *this; } // ----------------------------------------------------------------------- BigInt& BigInt::operator-=( const BigInt& rVal ) { if ( !bIsBig && !rVal.bIsBig ) { if ( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG && nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG ) { // wir bewegen uns im ungefaehrlichem Bereich nVal -= rVal.nVal; return *this; } if ( (nVal < 0) == (rVal.nVal < 0) ) { // wir bewegen uns im ungefaehrlichem Bereich nVal -= rVal.nVal; return *this; } } BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( *this ); aTmp2.MakeBigInt( rVal ); aTmp1.SubLong( aTmp2, *this ); Normalize(); return *this; } // ----------------------------------------------------------------------- BigInt& BigInt::operator*=( const BigInt& rVal ) { if ( !bIsBig && !rVal.bIsBig && nVal <= MY_MAXSHORT && rVal.nVal <= MY_MAXSHORT && nVal >= MY_MINSHORT && rVal.nVal >= MY_MINSHORT ) // nicht optimal !!! W.P. { // wir bewegen uns im ungefaehrlichem Bereich nVal *= rVal.nVal; } else { BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( rVal ); aTmp2.MakeBigInt( *this ); aTmp1.MultLong(aTmp2, *this); Normalize(); } return *this; } // ----------------------------------------------------------------------- BigInt& BigInt::operator/=( const BigInt& rVal ) { if ( !rVal.bIsBig ) { if ( rVal.nVal == 0 ) { DBG_ERROR( "BigInt::operator/ --> divide by zero" ); return *this; } if ( !bIsBig ) { // wir bewegen uns im ungefaehrlichem Bereich nVal /= rVal.nVal; return *this; } if ( rVal.nVal == 1 ) return *this; if ( rVal.nVal == -1 ) { bIsNeg = !bIsNeg; return *this; } if ( rVal.nVal <= (long)0xFFFF && rVal.nVal >= -(long)0xFFFF ) { // ein BigInt durch ein sal_uInt16 teilen sal_uInt16 nTmp; if ( rVal.nVal < 0 ) { nTmp = (sal_uInt16) -rVal.nVal; bIsNeg = !bIsNeg; } else nTmp = (sal_uInt16) rVal.nVal; Div( nTmp, nTmp ); Normalize(); return *this; } } if ( ABS_IsLess( rVal ) ) { *this = BigInt( (long)0 ); return *this; } // BigInt durch BigInt teilen BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( *this ); aTmp2.MakeBigInt( rVal ); aTmp1.DivLong(aTmp2, *this); Normalize(); return *this; } // ----------------------------------------------------------------------- void BigInt::DivMod( const BigInt& rVal, BigInt& rMod ) { if ( !rVal.bIsBig ) { if ( rVal.nVal == 0 ) { DBG_ERROR( "BigInt::operator/ --> divide by zero" ); return; } if ( !bIsBig ) { // wir bewegen uns im ungefaehrlichem Bereich rMod = BigInt( nVal % rVal.nVal ); nVal /= rVal.nVal; return; } if ( rVal.nVal == 1 ) { rMod = BigInt( (long)0 ); return; } if ( rVal.nVal == -1 ) { rMod = BigInt( (long)0 ); bIsNeg = !bIsNeg; return; } if ( rVal.nVal <= (long)0xFFFF && rVal.nVal >= -(long)0xFFFF ) { // ein BigInt durch ein sal_uInt16 teilen sal_uInt16 nTmp; if ( rVal.nVal < 0 ) { nTmp = (sal_uInt16) -rVal.nVal; bIsNeg = !bIsNeg; } else nTmp = (sal_uInt16) rVal.nVal; Div( nTmp, nTmp ); rMod = BigInt( (long)nTmp ); Normalize(); return; } } if ( ABS_IsLess( rVal ) ) { rMod = *this; *this = BigInt( (long)0 ); return; } // BigInt durch BigInt teilen BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( *this ); aTmp2.MakeBigInt( rVal ); aTmp1.DivLong(aTmp2, *this); Normalize(); aTmp1.ModLong(aTmp2, rMod); // nicht optimal rMod.Normalize(); } // ----------------------------------------------------------------------- BigInt& BigInt::operator%=( const BigInt& rVal ) { if ( !rVal.bIsBig ) { if ( rVal.nVal == 0 ) { DBG_ERROR( "BigInt::operator/ --> divide by zero" ); return *this; } if ( !bIsBig ) { // wir bewegen uns im ungefaehrlichem Bereich nVal %= rVal.nVal; return *this; } if ( rVal.nVal <= (long)0xFFFF && rVal.nVal >= -(long)0xFFFF ) { // ein BigInt durch ein short teilen sal_uInt16 nTmp; if ( rVal.nVal < 0 ) { nTmp = (sal_uInt16) -rVal.nVal; bIsNeg = !bIsNeg; } else nTmp = (sal_uInt16) rVal.nVal; Div( nTmp, nTmp ); *this = BigInt( (long)nTmp ); return *this; } } if ( ABS_IsLess( rVal ) ) return *this; // BigInt durch BigInt teilen BigInt aTmp1, aTmp2; aTmp1.MakeBigInt( *this ); aTmp2.MakeBigInt( rVal ); aTmp1.ModLong(aTmp2, *this); Normalize(); return *this; } // ----------------------------------------------------------------------- sal_Bool operator==( const BigInt& rVal1, const BigInt& rVal2 ) { if ( rVal1.bIsBig || rVal2.bIsBig ) { BigInt nA, nB; nA.MakeBigInt( rVal1 ); nB.MakeBigInt( rVal2 ); if ( nA.bIsNeg == nB.bIsNeg ) { if ( nA.nLen == nB.nLen ) { int i; for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- ) { } return nA.nNum[i] == nB.nNum[i]; } return sal_False; } return sal_False; } return rVal1.nVal == rVal2.nVal; } // ----------------------------------------------------------------------- sal_Bool operator<( const BigInt& rVal1, const BigInt& rVal2 ) { if ( rVal1.bIsBig || rVal2.bIsBig ) { BigInt nA, nB; nA.MakeBigInt( rVal1 ); nB.MakeBigInt( rVal2 ); if ( nA.bIsNeg == nB.bIsNeg ) { if ( nA.nLen == nB.nLen ) { int i; for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- ) { } if ( nA.bIsNeg ) return nA.nNum[i] > nB.nNum[i]; else return nA.nNum[i] < nB.nNum[i]; } if ( nA.bIsNeg ) return nA.nLen > nB.nLen; else return nA.nLen < nB.nLen; } return !nB.bIsNeg; } return rVal1.nVal < rVal2.nVal; } // ----------------------------------------------------------------------- sal_Bool operator >(const BigInt& rVal1, const BigInt& rVal2 ) { if ( rVal1.bIsBig || rVal2.bIsBig ) { BigInt nA, nB; nA.MakeBigInt( rVal1 ); nB.MakeBigInt( rVal2 ); if ( nA.bIsNeg == nB.bIsNeg ) { if ( nA.nLen == nB.nLen ) { int i; for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- ) { } if ( nA.bIsNeg ) return nA.nNum[i] < nB.nNum[i]; else return nA.nNum[i] > nB.nNum[i]; } if ( nA.bIsNeg ) return nA.nLen < nB.nLen; else return nA.nLen > nB.nLen; } return !nA.bIsNeg; } return rVal1.nVal > rVal2.nVal; }