/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include /** * The range in which we can perform add/sub without fear of overflow */ const sal_Int32 MY_MAXLONG = 0x3fffffff; const sal_Int32 MY_MINLONG = -MY_MAXLONG; /* * The algorithms for Addition, Subtraction, Multiplication and Division * of large numbers originate from SEMINUMERICAL ALGORITHMS by * DONALD E. KNUTH in the series The Art of Computer Programming: * chapter 4.3.1. The Classical Algorithms. */ BigInt BigInt::MakeBig() const { if (IsBig()) { BigInt ret(*this); while ( ret.nLen > 1 && ret.nNum[ret.nLen-1] == 0 ) ret.nLen--; return ret; } BigInt ret; if (nVal < 0) { ret.bIsNeg = true; ret.nNum[0] = -static_cast(nVal); } else { ret.bIsNeg = false; ret.nNum[0] = nVal; } ret.nLen = 1; return ret; } void BigInt::Normalize() { if (IsBig()) { while ( nLen > 1 && nNum[nLen-1] == 0 ) nLen--; if (nLen < 2) { constexpr sal_uInt32 maxForPosInt32 = std::numeric_limits::max(); constexpr sal_uInt32 maxForNegInt32 = -sal_Int64(std::numeric_limits::min()); sal_uInt32 nNum0 = nNum[0]; if (bIsNeg && nNum0 <= maxForNegInt32) { nVal = -sal_Int64(nNum0); nLen = 0; } else if (!bIsNeg && nNum0 <= maxForPosInt32) { nVal = nNum0; nLen = 0; } } } } // Normalization in DivLong requires that dividend is multiplied by a number, and the resulting // value has 1 more 32-bit "digits". 'ret' provides enough room for that. Use of std::span gives // run-time index checking in debug builds. static std::span Mult(std::span aNum, sal_uInt32 nMul, std::span retBuf) { assert(retBuf.size() >= aNum.size()); sal_uInt64 nK = 0; for (size_t i = 0; i < aNum.size(); i++) { sal_uInt64 nTmp = static_cast(aNum[i]) * nMul + nK; nK = nTmp >> 32; retBuf[i] = static_cast(nTmp); } if ( nK ) { assert(retBuf.size() > aNum.size()); retBuf[aNum.size()] = nK; return retBuf.subspan(0, aNum.size() + 1); } return retBuf.subspan(0, aNum.size()); } static size_t DivInPlace(std::span aNum, sal_uInt32 nDiv, sal_uInt32& rRem) { assert(aNum.size() > 0); sal_uInt64 nK = 0; for (int i = aNum.size() - 1; i >= 0; i--) { sal_uInt64 nTmp = aNum[i] + (nK << 32); aNum[i] = nTmp / nDiv; nK = nTmp % nDiv; } rRem = nK; if (aNum[aNum.size() - 1] == 0) return aNum.size() - 1; return aNum.size(); } bool BigInt::ABS_IsLessBig(const BigInt& rVal) const { assert(IsBig() && rVal.IsBig()); if ( rVal.nLen < nLen) return false; if ( rVal.nLen > nLen ) return true; int i = nLen - 1; while (i > 0 && nNum[i] == rVal.nNum[i]) --i; return nNum[i] < rVal.nNum[i]; } void BigInt::AddBig(BigInt& rB, BigInt& rRes) { assert(IsBig() && rB.IsBig()); if ( bIsNeg == rB.bIsNeg ) { int i; char len; // if length of the two values differ, fill remaining positions // of the smaller value with zeros. if (nLen >= rB.nLen) { len = nLen; for (i = rB.nLen; i < len; i++) rB.nNum[i] = 0; } else { len = rB.nLen; for (i = nLen; i < len; i++) nNum[i] = 0; } // Add numerals, starting from the back sal_Int64 k = 0; for (i = 0; i < len; i++) { sal_Int64 nZ = static_cast(nNum[i]) + static_cast(rB.nNum[i]) + k; if (nZ > sal_Int64(std::numeric_limits::max())) k = 1; else k = 0; rRes.nNum[i] = static_cast(nZ); } // If an overflow occurred, add to solution if (k) { assert(i < MAX_DIGITS); rRes.nNum[i] = 1; len++; } // Set length and sign rRes.nLen = len; rRes.bIsNeg = bIsNeg; } // If one of the values is negative, perform subtraction instead else { bIsNeg = !bIsNeg; rB.SubBig(*this, rRes); bIsNeg = !bIsNeg; } } void BigInt::SubBig(BigInt& rB, BigInt& rRes) { assert(IsBig() && rB.IsBig()); if ( bIsNeg == rB.bIsNeg ) { char len; // if length of the two values differ, fill remaining positions // of the smaller value with zeros. if (nLen >= rB.nLen) { len = nLen; for (int i = rB.nLen; i < len; i++) rB.nNum[i] = 0; } else { len = rB.nLen; for (int i = nLen; i < len; i++) nNum[i] = 0; } const bool bThisIsLess = ABS_IsLessBig(rB); BigInt& rGreater = bThisIsLess ? rB : *this; BigInt& rSmaller = bThisIsLess ? *this : rB; sal_Int64 k = 0; for (int i = 0; i < len; i++) { sal_Int64 nZ = static_cast(rGreater.nNum[i]) - static_cast(rSmaller.nNum[i]) + k; if (nZ < 0) k = -1; else k = 0; rRes.nNum[i] = static_cast(nZ); } // if a < b, revert sign rRes.bIsNeg = bThisIsLess ? !bIsNeg : bIsNeg; rRes.nLen = len; } // If one of the values is negative, perform addition instead else { bIsNeg = !bIsNeg; AddBig(rB, rRes); bIsNeg = !bIsNeg; rRes.bIsNeg = bIsNeg; } } void BigInt::MultBig(const BigInt& rB, BigInt& rRes) const { assert(IsBig() && rB.IsBig()); rRes.bIsNeg = bIsNeg != rB.bIsNeg; rRes.nLen = nLen + rB.nLen; assert(rRes.nLen <= MAX_DIGITS); for (int i = 0; i < rRes.nLen; i++) rRes.nNum[i] = 0; for (int j = 0; j < rB.nLen; j++) { sal_uInt64 k = 0; int i; for (i = 0; i < nLen; i++) { sal_uInt64 nZ = static_cast(nNum[i]) * static_cast(rB.nNum[j]) + static_cast(rRes.nNum[i + j]) + k; rRes.nNum[i + j] = static_cast(nZ); k = nZ >> 32; } rRes.nNum[i + j] = k; } } void BigInt::DivModBig(const BigInt& rB, BigInt* pDiv, BigInt* pMod) const { assert(IsBig() && rB.IsBig()); assert(nLen >= rB.nLen); assert(rB.nNum[rB.nLen - 1] != 0); sal_uInt32 nMult = static_cast(0x100000000 / (static_cast(rB.nNum[rB.nLen - 1]) + 1)); sal_uInt32 numBuf[MAX_DIGITS + 1]; // normalized dividend auto num = Mult({ nNum, nLen }, nMult, numBuf); if (num.size() == nLen) { num = std::span(numBuf, nLen + 1); num[nLen] = 0; } sal_uInt32 denBuf[MAX_DIGITS + 1]; // normalized divisor const auto den = Mult({ rB.nNum, rB.nLen }, nMult, denBuf); assert(den.size() == rB.nLen); const sal_uInt64 nDenMostSig = den[rB.nLen - 1]; assert(nDenMostSig >= 0x100000000 / 2); const sal_uInt64 nDen2ndSig = rB.nLen > 1 ? den[rB.nLen - 2] : 0; BigInt aTmp; BigInt& rRes = pDiv ? *pDiv : aTmp; for (size_t j = num.size() - 1; j >= den.size(); j--) { // guess divisor assert(num[j] < nDenMostSig || (num[j] == nDenMostSig && num[j - 1] == 0)); sal_uInt64 nTmp = ( static_cast(num[j]) << 32 ) + num[j - 1]; sal_uInt32 nQ; if (num[j] == nDenMostSig) nQ = 0xFFFFFFFF; else nQ = static_cast(nTmp / nDenMostSig); if (nDen2ndSig && (nDen2ndSig * nQ) > ((nTmp - nDenMostSig * nQ) << 32) + num[j - 2]) nQ--; // Start division sal_uInt32 nK = 0; size_t i; for (i = 0; i < den.size(); i++) { nTmp = static_cast(num[j - den.size() + i]) - (static_cast(den[i]) * nQ) - nK; num[j - den.size() + i] = static_cast(nTmp); nK = static_cast(nTmp >> 32); if ( nK ) nK = static_cast(0x100000000 - nK); } sal_uInt32& rNum(num[j - den.size() + i]); rNum -= nK; if (num[j - den.size() + i] == 0) rRes.nNum[j - den.size()] = nQ; else { rRes.nNum[j - den.size()] = nQ - 1; nK = 0; for (i = 0; i < den.size(); i++) { nTmp = num[j - den.size() + i] + den[i] + nK; num[j - den.size() + i] = static_cast(nTmp & 0xFFFFFFFF); if (nTmp > std::numeric_limits::max()) nK = 1; else nK = 0; } } } if (pMod) { pMod->nLen = DivInPlace(num, nMult, nMult); assert(pMod->nLen <= MAX_DIGITS); pMod->bIsNeg = bIsNeg; std::copy_n(num.begin(), pMod->nLen, pMod->nNum); pMod->Normalize(); } if (pDiv) // rRes references pDiv { pDiv->bIsNeg = bIsNeg != rB.bIsNeg; pDiv->nLen = nLen - rB.nLen + 1; pDiv->Normalize(); } } BigInt::BigInt( std::u16string_view rString ) : nLen(0) { bIsNeg = false; nVal = 0; bool bNeg = false; auto p = rString.begin(); auto pEnd = rString.end(); if (p == pEnd) return; if ( *p == '-' ) { bNeg = true; p++; } if (p == pEnd) return; while( p != pEnd && *p >= '0' && *p <= '9' ) { *this *= 10; *this += *p - '0'; p++; } if (IsBig()) bIsNeg = bNeg; else if( bNeg ) nVal = -nVal; } BigInt::BigInt( double nValue ) : nVal(0) { if ( nValue < 0 ) { nValue *= -1; bIsNeg = true; } else { bIsNeg = false; } if ( nValue < 1 ) { nVal = 0; nLen = 0; } else { int i=0; while ( ( nValue > 0x100000000 ) && ( i < MAX_DIGITS ) ) { nNum[i] = static_cast(fmod( nValue, 0x100000000 )); nValue -= nNum[i]; nValue /= 0x100000000; i++; } if ( i < MAX_DIGITS ) nNum[i++] = static_cast(nValue); nLen = i; if ( i < 2 ) Normalize(); } } BigInt::BigInt( sal_uInt32 nValue ) : nVal(0) , bIsNeg(false) { if ( nValue & 0x80000000U ) { nNum[0] = nValue; nLen = 1; } else { nVal = nValue; nLen = 0; } } BigInt::BigInt( sal_Int64 nValue ) : nVal(0) { bIsNeg = nValue < 0; nLen = 0; if ((nValue >= SAL_MIN_INT32) && (nValue <= SAL_MAX_INT32)) { nVal = static_cast(nValue); } else { for (sal_uInt64 n = static_cast(bIsNeg ? -nValue : nValue); n != 0; n >>= 32) nNum[nLen++] = static_cast(n); } } BigInt::operator double() const { if (!IsBig()) return static_cast(nVal); else { int i = nLen-1; double nRet = static_cast(nNum[i]); while ( i ) { nRet *= 0x100000000; i--; nRet += static_cast(nNum[i]); } if ( bIsNeg ) nRet *= -1; return nRet; } } BigInt& BigInt::operator=( const BigInt& rBigInt ) { if (this == &rBigInt) return *this; if (rBigInt.IsBig()) memcpy( static_cast(this), static_cast(&rBigInt), sizeof( BigInt ) ); else { nLen = 0; nVal = rBigInt.nVal; } return *this; } BigInt& BigInt::operator+=( const BigInt& rVal ) { if (!IsBig() && !rVal.IsBig()) { if( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG && nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG ) { // No overflows may occur here nVal += rVal.nVal; return *this; } if( (nVal < 0) != (rVal.nVal < 0) ) { // No overflows may occur here nVal += rVal.nVal; return *this; } } BigInt aTmp2 = rVal.MakeBig(); MakeBig().AddBig(aTmp2, *this); Normalize(); return *this; } BigInt& BigInt::operator-=( const BigInt& rVal ) { if (!IsBig() && !rVal.IsBig()) { if ( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG && nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG ) { // No overflows may occur here nVal -= rVal.nVal; return *this; } if ( (nVal < 0) == (rVal.nVal < 0) ) { // No overflows may occur here nVal -= rVal.nVal; return *this; } } BigInt aTmp2 = rVal.MakeBig(); MakeBig().SubBig(aTmp2, *this); Normalize(); return *this; } BigInt& BigInt::operator*=( const BigInt& rVal ) { static const sal_Int32 MY_MAXSHORT = 0x00007fff; static const sal_Int32 MY_MINSHORT = -MY_MAXSHORT; if (!IsBig() && !rVal.IsBig() && nVal <= MY_MAXSHORT && rVal.nVal <= MY_MAXSHORT && nVal >= MY_MINSHORT && rVal.nVal >= MY_MINSHORT ) // TODO: not optimal !!! W.P. { // No overflows may occur here nVal *= rVal.nVal; } else { rVal.MakeBig().MultBig(MakeBig(), *this); Normalize(); } return *this; } void BigInt::DivMod(const BigInt& rVal, BigInt* pDiv, BigInt* pMod) const { assert(pDiv || pMod); // Avoid useless calls if (!rVal.IsBig()) { if ( rVal.nVal == 0 ) { OSL_FAIL( "BigInt::operator/ --> divide by zero" ); return; } if (rVal.nVal == 1) { if (pDiv) { *pDiv = *this; pDiv->Normalize(); } if (pMod) *pMod = 0; return; } if (!IsBig()) { // No overflows may occur here const sal_Int32 nDiv = nVal / rVal.nVal; // Compilers usually optimize adjacent const sal_Int32 nMod = nVal % rVal.nVal; // / and % into a single instruction if (pDiv) *pDiv = nDiv; if (pMod) *pMod = nMod; return; } if ( rVal.nVal == -1 ) { if (pDiv) { *pDiv = *this; pDiv->bIsNeg = !bIsNeg; pDiv->Normalize(); } if (pMod) *pMod = 0; return; } // Divide BigInt with an sal_uInt32 sal_uInt32 nTmp; bool bNegate; if ( rVal.nVal < 0 ) { nTmp = static_cast(-rVal.nVal); bNegate = true; } else { nTmp = static_cast(rVal.nVal); bNegate = false; } BigInt aTmp; BigInt& rDiv = pDiv ? *pDiv : aTmp; rDiv = *this; rDiv.nLen = DivInPlace({ rDiv.nNum, rDiv.nLen }, nTmp, nTmp); if (pDiv) { if (bNegate) pDiv->bIsNeg = !pDiv->bIsNeg; pDiv->Normalize(); } if (pMod) { *pMod = BigInt(nTmp); } return; } BigInt tmpA = MakeBig(), tmpB = rVal.MakeBig(); if (tmpA.ABS_IsLessBig(tmpB)) { // First store *this to *pMod, then nullify *pDiv, to handle 'pDiv == this' case if (pMod) { *pMod = *this; pMod->Normalize(); } if (pDiv) *pDiv = 0; return; } // Divide BigInt with BigInt tmpA.DivModBig(tmpB, pDiv, pMod); } BigInt& BigInt::operator/=( const BigInt& rVal ) { DivMod(rVal, this, nullptr); return *this; } BigInt& BigInt::operator%=( const BigInt& rVal ) { DivMod(rVal, nullptr, this); return *this; } bool operator==( const BigInt& rVal1, const BigInt& rVal2 ) { if (!rVal1.IsBig() && !rVal2.IsBig()) return rVal1.nVal == rVal2.nVal; BigInt nA = rVal1.MakeBig(), nB = rVal2.MakeBig(); return nA.bIsNeg == nB.bIsNeg && nA.nLen == nB.nLen && std::equal(nA.nNum, nA.nNum + nA.nLen, nB.nNum); } std::strong_ordering operator<=>(const BigInt& rVal1, const BigInt& rVal2) { if (!rVal1.IsBig() && !rVal2.IsBig()) return rVal1.nVal <=> rVal2.nVal; BigInt nA = rVal1.MakeBig(), nB = rVal2.MakeBig(); if (nA.bIsNeg != nB.bIsNeg) return nB.bIsNeg ? std::strong_ordering::less : std::strong_ordering::greater; if (nA.nLen < nB.nLen) return nB.bIsNeg ? std::strong_ordering::greater : std::strong_ordering::less; if (nA.nLen > nB.nLen) return nB.bIsNeg ? std::strong_ordering::less : std::strong_ordering::greater; int i = nA.nLen - 1; while (i > 0 && nA.nNum[i] == nB.nNum[i]) --i; return nB.bIsNeg ? (nB.nNum[i] <=> nA.nNum[i]) : (nA.nNum[i] <=> nB.nNum[i]); } tools::Long BigInt::Scale( tools::Long nVal, tools::Long nMul, tools::Long nDiv ) { BigInt aVal( nVal ); aVal *= nMul; if ( aVal.IsNeg() != ( nDiv < 0 ) ) aVal -= nDiv / 2; // for correct rounding else aVal += nDiv / 2; // for correct rounding aVal /= nDiv; return tools::Long( aVal ); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */