/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER #include #endif static boost::rational rational_FromDouble(double dVal); static void rational_ReduceInaccurate(boost::rational& rRational, unsigned nSignificantBits); static boost::rational toRational(sal_Int32 n, sal_Int32 d) { // https://github.com/boostorg/boost/issues/335 when these are std::numeric_limits::min if (n == d) return 1; // tdf#144319 avoid boost::bad_rational e.g. if numerator=-476741369, denominator=-2147483648 if (d < -std::numeric_limits::max()) return 0; return boost::rational(n, d); } // Initialized by setting nNum as nominator and nDen as denominator // Negative values in the denominator are invalid and cause the // inversion of both nominator and denominator signs // in order to return the correct value. Fraction::Fraction( sal_Int64 nNum, sal_Int64 nDen ) : mnNumerator(nNum), mnDenominator(nDen) { assert( nNum >= std::numeric_limits::min() ); assert( nNum <= std::numeric_limits::max( )); assert( nDen >= std::numeric_limits::min() ); assert( nDen <= std::numeric_limits::max( )); if ( nDen == 0 ) { mbValid = false; SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" ); return; } if ((nDen == -1 && nNum == std::numeric_limits::min()) || (nNum == -1 && nDen == std::numeric_limits::min())) { mbValid = false; SAL_WARN("tools.fraction", "'Fraction(" << nNum << "," << nDen << ")' invalid fraction created"); return; } } /** * only here to prevent passing of NaN */ Fraction::Fraction( double nNum, double nDen ) : mnNumerator(sal_Int64(nNum)), mnDenominator(sal_Int64(nDen)) { assert( !std::isnan(nNum) ); assert( !std::isnan(nDen) ); assert( nNum >= std::numeric_limits::min() ); assert( nNum <= std::numeric_limits::max( )); assert( nDen >= std::numeric_limits::min() ); assert( nDen <= std::numeric_limits::max( )); if ( nDen == 0 ) { mbValid = false; SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" ); return; } } Fraction::Fraction( double dVal ) { try { boost::rational v = rational_FromDouble( dVal ); mnNumerator = v.numerator(); mnDenominator = v.denominator(); } catch (const boost::bad_rational&) { mbValid = false; SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" ); } } Fraction::operator double() const { if (!mbValid) { SAL_WARN( "tools.fraction", "'double()' on invalid fraction" ); return 0.0; } return boost::rational_cast(toRational(mnNumerator, mnDenominator)); } // This methods first validates both values. // If one of the arguments is invalid, the whole operation is invalid. // After computation detect if result overflows a sal_Int32 value // which cause the operation to be marked as invalid Fraction& Fraction::operator += ( const Fraction& rVal ) { if ( !rVal.mbValid ) mbValid = false; if ( !mbValid ) { SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" ); return *this; } boost::rational a = toRational(mnNumerator, mnDenominator); a += toRational(rVal.mnNumerator, rVal.mnDenominator); mnNumerator = a.numerator(); mnDenominator = a.denominator(); return *this; } Fraction& Fraction::operator -= ( const Fraction& rVal ) { if ( !rVal.mbValid ) mbValid = false; if ( !mbValid ) { SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" ); return *this; } boost::rational a = toRational(mnNumerator, mnDenominator); a -= toRational(rVal.mnNumerator, rVal.mnDenominator); mnNumerator = a.numerator(); mnDenominator = a.denominator(); return *this; } namespace { template bool checked_multiply_by(boost::rational& i, const boost::rational& r) { // Protect against self-modification T num = r.numerator(); T den = r.denominator(); // Avoid overflow and preserve normalization T gcd1 = std::gcd(i.numerator(), den); T gcd2 = std::gcd(num, i.denominator()); bool fail = false; fail |= o3tl::checked_multiply(i.numerator() / gcd1, num / gcd2, num); fail |= o3tl::checked_multiply(i.denominator() / gcd2, den / gcd1, den); if (!fail) i.assign(num, den); return fail; } } Fraction& Fraction::operator *= ( const Fraction& rVal ) { if ( !rVal.mbValid ) mbValid = false; if ( !mbValid ) { SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" ); return *this; } boost::rational a = toRational(mnNumerator, mnDenominator); boost::rational b = toRational(rVal.mnNumerator, rVal.mnDenominator); bool bFail = checked_multiply_by(a, b); mnNumerator = a.numerator(); mnDenominator = a.denominator(); if (bFail) { mbValid = false; } return *this; } Fraction& Fraction::operator /= ( const Fraction& rVal ) { if ( !rVal.mbValid ) mbValid = false; if ( !mbValid ) { SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" ); return *this; } boost::rational a = toRational(mnNumerator, mnDenominator); a /= toRational(rVal.mnNumerator, rVal.mnDenominator); mnNumerator = a.numerator(); mnDenominator = a.denominator(); return *this; } /** Inaccurate cancellation for a fraction. Clip both nominator and denominator to said number of bits. If either of those already have equal or less number of bits used, this method does nothing. @param nSignificantBits denotes, how many significant binary digits to maintain, in both nominator and denominator. @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the largest error occurs with the following pair of values: binary 1000000011111111111111111111111b/1000000000000000000000000000000b = 1082130431/1073741824 = approx. 1.007812499 A ReduceInaccurate(8) yields 1/1. */ void Fraction::ReduceInaccurate( unsigned nSignificantBits ) { if ( !mbValid ) { SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" ); return; } if ( !mnNumerator ) return; auto a = toRational(mnNumerator, mnDenominator); rational_ReduceInaccurate(a, nSignificantBits); mnNumerator = a.numerator(); mnDenominator = a.denominator(); } sal_Int32 Fraction::GetNumerator() const { if ( !mbValid ) { SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" ); return 0; } return mnNumerator; } sal_Int32 Fraction::GetDenominator() const { if ( !mbValid ) { SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" ); return -1; } return mnDenominator; } Fraction::operator sal_Int32() const { if ( !mbValid ) { SAL_WARN( "tools.fraction", "'operator sal_Int32()' on invalid fraction" ); return 0; } return boost::rational_cast(toRational(mnNumerator, mnDenominator)); } Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg += rVal2; return aErg; } Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg -= rVal2; return aErg; } Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg *= rVal2; return aErg; } Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg /= rVal2; return aErg; } bool operator !=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 == rVal2); } bool operator <=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 > rVal2); } bool operator >=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 < rVal2); } bool operator == ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mbValid || !rVal2.mbValid ) { SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" ); return false; } return toRational(rVal1.mnNumerator, rVal1.mnDenominator) == toRational(rVal2.mnNumerator, rVal2.mnDenominator); } bool operator < ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mbValid || !rVal2.mbValid ) { SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" ); return false; } return toRational(rVal1.mnNumerator, rVal1.mnDenominator) < toRational(rVal2.mnNumerator, rVal2.mnDenominator); } bool operator > ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mbValid || !rVal2.mbValid ) { SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" ); return false; } return toRational(rVal1.mnNumerator, rVal1.mnDenominator) > toRational(rVal2.mnNumerator, rVal2.mnDenominator); } // If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational. // Otherwise, dVal and denominator are multiplied by 10, until one of them // is larger than (LONG_MAX / 10). // // NOTE: here we use 'sal_Int32' due that only values in sal_Int32 range are valid. static boost::rational rational_FromDouble(double dVal) { if ( dVal > std::numeric_limits::max() || dVal < std::numeric_limits::min() || std::isnan(dVal) ) throw boost::bad_rational(); const sal_Int32 nMAX = std::numeric_limits::max() / 10; sal_Int32 nDen = 1; while ( std::abs( dVal ) < nMAX && nDen < nMAX ) { dVal *= 10; nDen *= 10; } return boost::rational( sal_Int32(dVal), nDen ); } /** * Find the number of bits required to represent this number, using the CLZ intrinsic */ static int impl_NumberOfBits( sal_uInt32 nNum ) { if (nNum == 0) return 0; #ifdef _MSC_VER unsigned long r = 0; _BitScanReverse(&r, nNum); return r + 1; #else return 32 - __builtin_clz(nNum); #endif } /** Inaccurate cancellation for a fraction. Clip both nominator and denominator to said number of bits. If either of those already have equal or less number of bits used, this method does nothing. @param nSignificantBits denotes, how many significant binary digits to maintain, in both nominator and denominator. @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the largest error occurs with the following pair of values: binary 1000000011111111111111111111111b/1000000000000000000000000000000b = 1082130431/1073741824 = approx. 1.007812499 A ReduceInaccurate(8) yields 1/1. */ static void rational_ReduceInaccurate(boost::rational& rRational, unsigned nSignificantBits) { if ( !rRational ) return; // http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation sal_Int32 nMul = rRational.numerator(); if (nMul == std::numeric_limits::min()) { // ofz#32973 Integer-overflow return; } const bool bNeg = nMul < 0; if (bNeg) nMul = -nMul; sal_Int32 nDiv = rRational.denominator(); DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!"); // How much bits can we lose? const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 ); const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 ); const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose ); // Remove the bits nMul >>= nToLose; nDiv >>= nToLose; if ( !nMul || !nDiv ) { // Return without reduction OSL_FAIL( "Oops, we reduced too much..." ); return; } rRational.assign( bNeg ? -nMul : nMul, nDiv ); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */